K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Xét tứ giác ABDK có

H là trung điểm chung của AD và BK

AD vuông góc BK tại H

Do đó: ABDK là hình thoi

=>AK//BD

c: ABDK là hình thoi

=>AB=BD

 

24 tháng 8 2023

Câu a đâu bạn

 

20 tháng 12 2020

a) Xét ΔBHA vuông tại H và ΔBHD vuông tại H có 

BH chung

AH=DH(gt)

Do đó: ΔBHA=ΔBHD(hai cạnh góc vuông)

b) Xét ΔHBA vuông tại H và ΔHKD vuông tại H có

HB=HK(gt)

HA=HD(gt)

Do đó: ΔHBA=ΔHKD(hai cạnh góc vuông)

\(\widehat{HBA}=\widehat{HKD}\)(hai góc tương ứng)

mà \(\widehat{HBA}\) và \(\widehat{HKD}\) là hai góc ở vị trí so le trong

nên AB//DK(Dấu hiệu nhận biết hai đường thắng song song)

c) Ta có: AB//DK(cmt)

AB⊥AC(ΔABC vuông tại A)

Do đó: DK⊥AC

Xét ΔDAK có 

KH là đường cao ứng với cạnh AD(KH⊥AD)

AC là đường cao ứng với cạnh DK(AC⊥DK)

KH\(\cap\)AC={C}

Do đó: C là trực tâm của ΔDAK(Tính chất ba đường cao của tam giác)

⇒DC⊥AK(đpcm)

a: Xét ΔABH vuông tại H và ΔKIH vuông tại H có

HA=HK

HB=HI

=>ΔABH=ΔKIH

b: ΔABH=ΔKIH

=>góc ABH=góc KIH

=>AB//IK

c: IK//AB

AB vuông góc AC

=>IK vuông góc AC

=>I,K,E thẳng hàng

d: Xét tứ giác ABKI có

H là trung điểm chung của AK và BI

AK vuông góc BI

=>ABKI là hình thoi

=>AB=AI=IK

=>IK=ID

=>góc IKD=góc IDK

a: Đặt AB/3=AC/4=k

=>AB=3k; AC=4k

Xét ΔBAC vuông tại A có \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow25k^2=100\)

=>k=2

=>AB=6cm; AC=8cm

b: Xét ΔCAD có

CH là đường cao

CH là đường trung tuyến

Do đo: ΔCAD cân tại C

hay CA=CD

Xét ΔBAD có

BH là đườg cao

BH là đường trung tuyến

Do đo:ΔBAD cân tại B

Xét ΔCAB và ΔCDB có

CA=CD

AB=DB

CB chung

Do đó: ΔCAB=ΔCDB
Suy ra: \(\widehat{CAB}=\widehat{CDB}=90^0\)

hay ΔBDC vuông tại D

c: Xét ΔDAE có

C là trung điểm của DE

H là trung điểm của DA

DO đó:CH là đường trung bình

=>CH//AE
hay AE//BC

a: Đặt AB/3=AC/4=k

=>AB=3k; AC=4k

Xét ΔBAC vuông tại A có \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow25k^2=100\)

=>k=2

=>AB=6cm; AC=8cm

b: Xét ΔCAD có

CH là đường cao

CH là đường trung tuyến

Do đo: ΔCAD cân tại C

hay CA=CD

Xét ΔBAD có

BH là đườg cao

BH là đường trung tuyến

Do đo:ΔBAD cân tại B

Xét ΔCAB và ΔCDB có

CA=CD

AB=DB

CB chung

Do đó: ΔCAB=ΔCDB
Suy ra: \(\widehat{CAB}=\widehat{CDB}=90^0\)

hay ΔBDC vuông tại D

c: Xét ΔDAE có

C là trung điểm của DE

H là trung điểm của DA

DO đó:CH là đường trung bình

=>CH//AE
hay AE//BC

1.Cho tam giác có góc A = 60 độ và AB<AC . Trên cạnh AC lấy điểm D sao cho AD=AB. Tia phân giác của góc A cắt BC ở Ea.Chứng minh tam giác ABE = tam giác ADEb.AE cắt BD tại I .Chứng minh I là trung điểm của BDc.Trên tia AI lấy điểm H sao cho IA=IH. Chứng minh AB song song với HD d.Tính số đo góc ABD2.Cho tam giác ABC vuông tại A có góc B = 2 Góc C a.Tính số đo của góc B và C của Tam giác ABCb.Kẻ AH vuông góc với BC (...
Đọc tiếp

1.Cho tam giác có góc A = 60 độ và AB<AC . Trên cạnh AC lấy điểm D sao cho AD=AB. Tia phân giác của góc A cắt BC ở E

a.Chứng minh tam giác ABE = tam giác ADE

b.AE cắt BD tại I .Chứng minh I là trung điểm của BD

c.Trên tia AI lấy điểm H sao cho IA=IH. Chứng minh AB song song với HD 

d.Tính số đo góc ABD

2.Cho tam giác ABC vuông tại A có góc B = 2 Góc C 

a.Tính số đo của góc B và C của Tam giác ABC

b.Kẻ AH vuông góc với BC ( H thuộc BC) .Trên tia HC lấy D sao cho H là trung điểm của BD .Chứng minh Tam giác ABH= tam giác AHD

c.Chứng minh AD= Cd

d.TRên tia đối của HA lấy K sao cho HK= HA. Chứng minh KD là đường trung trực của AC.

3.Cho tam giác ABC có góc A= 90 độ ( AB<AC) kẻ AH vuông góc với BC ,. Trên Bc lấy I sao cho HI=HB. Trên tia đối của HA lấy K sao cho HK=HA

a.chứng minh tam giác ABH=tam giác KIH

b.Chứng minh AB song song với KI

c.Vẽ IE vuông góc với AC tại E . Chứng minh K, I,E thẳng hàng 

Giải giúp mình với các bạn . Mình cần rất gấp . Mai phải nộp rồi

Thanks nhiều nghen

1
9 tháng 5 2021

xét tam giác ABE và tam giác ADE 

AE chung 

góc BAE = góc DAE(AE la tia phân giác của góc E)

AB = AD ( gt)

=> tam giác ABE = tam giac DAE  ( c.g.c)

b) xét tam giác  ABI và tam giác ADI

AI chung 

góc BAE =  góc DAE 

tam giác  ABI=tam giác ADI

=> BI = DI ( 2 cạnh t/ứ )

=> I là trung điểm của BD

\(\text{#TNam}\)

`a,` Xét Tam giác `AMB` và Tam giác `EMC` có:

`MA=ME (g``t)`

\(\widehat{AMB}=\widehat{CME} (\text {2 góc đối đỉnh})\)

`MB=MC (\text {M là trung điểm của BC})`

`=> \text {Tam giác AMB = Tam giác EMC (c-g-c)}`

`b,` Vì Tam giác `AMB =` Tam giác `EMC (a)`

`-> AB = CE (\text {2 cạnh tương ứng}) (1)`

Xét Tam giác `ABH` và Tam giác `DBH` có:

`HA = HD (g``t)`

\(\widehat{AHB}=\widehat{DHB}=90^0\)

`\text {BH chung}`

`=> \text {Tam giác ABH = Tam giác DBH (c-g-c)}`

`-> AB = BD (\text {2 cạnh tương ứng}) (2)`

Từ `(1)` và `(2) -> CE = BD.`

`c,` Xét Tam giác `AMH` và Tam giác `DMH` có:

`\text {MH chung}`

\(\widehat{AHM}=\widehat{DHM}=90^0\)

`HA = HD (g``t)`

`=> \text {Tam giác AMH = Tam giác DMH (c-g-c)}`

`-> MA = MD (\text {2 cạnh tương ứng})`

Xét Tam giác `AMD: MA = MD`

`-> \text {Tam giác AMD cân tại M}`

*Hoặc nếu như bạn có học rồi, thì mình có thể dùng cái này cũng được nè cậu:>.

Vì `MH` vừa là đường cao (hạ từ đỉnh `->` cạnh đối diện), vừa là đường trung tuyến.

Theo tính chất của tam giác cân `-> \text {Tam giác AMD là tam giác cân} (đpcm).`

loading...

a: Xét ΔAMB và ΔEMC có

MA=ME

góc AMB=góc EMC

MB=MC

=>ΔAMB=ΔEMC

b: Xét ΔBAD có

BH vừa là đường cao, vừa là trung tuyến

=>ΔBAD cân tại B

=>BD=BA=CE

c: Xét ΔMAD có

MH vừa là đường cao, vừa là trung tuyến

=>ΔMAD cân tại M