K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Xét ∆AHC và ∆DHC có:

+CH chung

+\(\widehat{CHA}=\widehat{CHD}\left(=90^o\right)\)

+HA=HC(gt)

\(\Rightarrow\)∆HCA=∆HCD(ch-cgv)

 

19 tháng 7 2023

A B C H D E K

a/ Xét tg vuông AHC và tg vuông DHC có

HC chung

HA = HD (gt)

=> tg AHC = tg DHC (Hai tg vuông có 2 cạnh góc vuông bằng nhau)

b/ K là giao của AE và CD

Xét tg vuông ABC có

\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với góc \(\widehat{ABC}\) ) (1)

tg AHC = tg DHC (cmt) => \(\widehat{DCH}=\widehat{ACB}\) (2)

Xét tg vuông ABH và tg vuông AEH có

AH chung; HB = HE (gt) => tg ABH = tg AEH (hai tg vuông có 2 cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{BAH}=\widehat{EAH}\) (3)

Từ (1) (2) (3) => \(\widehat{EAH}=\widehat{DCH}\) (4)

Xét tg vuông AHE có

\(\widehat{EAH}+\widehat{AEH}=90^o\) (5)

Mà \(\widehat{AEH}=\widehat{CEK}\) (góc đối đỉnh) (6)

Từ (4) (5) (6) \(\Rightarrow\widehat{DCH}+\widehat{CEK}=90^o\Rightarrow\widehat{AKC}=90^o\)

\(\Rightarrow AK\perp CD\) mà \(CH\perp AD\) => E là trực tâm của tg ADC 

c/

tg ABH = tg AEH (cmt) => AB = AE

tg AHC = tg DHC (cmt) => AC = CD

Xét tg ABC có

\(AB+AC>BC\) (trong tg tổng độ dài 2 cạnh lớn hớn độ dài cạnh còn lại)

\(\Rightarrow AE+CD>BC\)

 

 

 

 

 

14 tháng 4 2022

mình cũng đang muốn lm bài này:(

 

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc C chung

=>ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD*CB=CA*CE

 

24 tháng 6 2017

A B C H E D 3 4

a)

Xét \(\Delta ABC\) và \(\Delta HBA\)có:

\(\widehat{BAC}=\widehat{AHB}\left(=90^ô\right)\)

\(\widehat{ABC}\)là góc chung (giả thiết)

Suy ra \(\Delta ABC\)đồng dạng với \(\Delta HBA\)(g.g)

b)

\(\Delta ABC\)vuông tại A

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

\(\Delta ABC\)đồng dạng với \(\Delta HBA\)

\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\Leftrightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=2,4\left(cm\right)\)

c) Ta có

\(\hept{\begin{cases}\text{AH//DE}\\\widehat{AHC}=90^o\end{cases}\Rightarrow\widehat{CDE}=90^o}\)

Xét \(\Delta ABC\)và \(\Delta DEC\)

\(\widehat{BAC}=\widehat{CDE}=90^o\)

\(\widehat{ACB}\)là góc chung (giả thiết)

Suy ra \(\Delta ABC\)đồng dạng với \(\Delta DEC\)(g.g)

\(\Rightarrow\frac{CA}{CB}=\frac{CD}{CE}\Leftrightarrow CE.CA=CD.CB\left(đpcm\right)\)

d)

\(\Delta AHB\)vuông tại H

\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-2,4^2}=1,8\left(cm\right)\)

Ta có;   \(CD=BC-BH-DH=5-1,8-2,4=0,8\left(cm\right)\)

Ta lại có: 

\(\frac{CA}{CB}=\frac{CD}{CE}\)(theo câu c)

\(\Rightarrow EC=\frac{CB.CD}{CA}=\frac{5.0,8}{4}=1\left(cm\right)\)

Ta lại có:

\(AE=AC-EC=4-1=3\left(cm\right)\)

mà \(AB=3cm\)nên \(AB=AE\)hay \(\Delta ABE\)cân tại A

Vậy \(\Delta ABE\)cân tại A

24 tháng 6 2017

Hình vẽ ko được chính xác bạn thông cảm