Tìm x biết:
x2-2018x=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2018x=0\\ \Leftrightarrow x\left(x-2018\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2108=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2018\end{matrix}\right.\)
Vậy `x=0` hoặc `x=2018`
\(2x^2+5x=0\\ \Leftrightarrow x\left(2x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\2x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)
Vậy `x=0` hoặc `x=-5/2`
x2 - 2x - 15 = 0
x2 - 25 - 2x + 10 =0
( x2 - 25) - ( 2x -10) =0
(x-5)(x+5) - 2( x-5) =0
(x-5) ( x+5-2) =0
(x-5)(x+3)
\(\left[{}\begin{matrix}x-5=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
kết luận x \(\in\) { -3; 5}
Đề:............
<=> - (1 - 2018x) + 2019x.(1 - 2018x) = 0
<=> (1 - 2018x).[(-1) + 2019x] = 0
Xét 2 trường hợp, ta có:
TH1: 1 - 2018x = 0 TH2: -1 + 2019x = 0
<=> 2018x = 1 <=> 2019x = 1
<=> x = 1/2018 <=> x = 1/2019
Vậy x = 1/2018; 1/2019
\(2018x-1+2019x\left(1-2018x\right)=0\)
\(-\left(1-2018x\right)+2019x\left(1-2018x\right)=0\)
\(\left(1-2018x\right)\left(-1+2019x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}1-2018x=0\\-1+2019x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2018}\\x=\frac{1}{2019}\end{cases}}}\)
Ta có :
Với x chẵn => x = 2 => 22 + 117 = y2
=> 121 = y2 => 112 = y2 => y = 11 (thoả mãn)
Với x lẻ => x2 cũng lẻ => x2 + 117 chẵn và x > 2
=> y2 chẵn => y = 2
Mà x < y => ko thoả mãn
Vậy x = 2 ; y = 11
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)+5x\left(x-3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(6x+3\right)=0\\ \Leftrightarrow3\left(x+2\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
\(x^2-2018x=0\\\Leftrightarrow x\left(x-2018\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2018=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2018\end{matrix}\right.\)
Vậy `x=0` hoặc `x=2018`
HMM......