K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AM nhỏ nhất khi MA là khoảng cách từ M xuống (d)

y=2x+3

=>2x-y+3=0

Gọi (d') là đường thẳng đi qua M và vuông góc (d)

=>MA nhỏ nhất là khi A là giao của (d) với (d')

(d') vuông góc (d)

=>(d'): y=-1/2x+b

Thay x=4 và y=2 vào (d'), ta được:

b-1/2*4=2

=>b-2=2

=>b=4

=>(d'): y=-1/2x+4

Tọa độ A là;

-1/2x+4=2x+3 và y=2x+3

=>-5/2x=-1 và y=2x+3

=>x=2/5 và y=4/5+3=19/5

 

22 tháng 8 2023

cái này mình kẻ đồ thị s v ạ 

 

23 tháng 8 2023

Khoảng cách từ 1 điểm đến 1 đường thẳng cho trước có độ dài ngắn nhất là khoảng cách từ điểm đã cho đến chân đường vuông góc của đường thẳng đi qua điểm đã cho với đường thẳng cho trước

Gọi đường thẳng đi qua M và vuông góc với y là g=ax+b

=> \(2.a=-1\Rightarrow a=-\dfrac{1}{2}\)

\(\Rightarrow g=a.x+b\Leftrightarrow2=-\dfrac{1}{2}.4+b\Rightarrow b=4\)

=> đồ thị hàm số đi qua M vuông góc với y là \(g=-\dfrac{1}{2}x+4\)

Để 2 đồ thị trên cắt nhau

\(\Rightarrow2x+3=-\dfrac{1}{2}x+4\Rightarrow x=\dfrac{2}{5}\) Thay \(x=\dfrac{2}{5}\) vào y=2x+3

\(\Rightarrow y=2.\dfrac{2}{5}+3=\dfrac{19}{5}\)

\(\Rightarrow A\left(\dfrac{2}{5};\dfrac{19}{5}\right)\)

 

10 tháng 8 2019

1.

để ............. căt nhau tại 1 điểm trên trục tung thì:

\(\hept{\begin{cases}0\ne2\left(T.m\right)\\2+m=3-m\end{cases}}\)

<=>2m=1

<=>m=1/2

b: Để hàm số đồng biến thì 2-m>0

hay m<2

b: Để hàm số đồng biến thì 2-m>0

hay m<2

27 tháng 12 2020

Phương trình hoành độ giao điểm:

\(x^2+2mx-3m=-2x+3\)

\(\Leftrightarrow x^2+2\left(m+1\right)x-3m-3=0\)

Hai đồ thị cắt nhau tại hai điểm phân biệt A, B khi phương trình \(\Leftrightarrow x^2+2\left(m+1\right)x-3m-3=0\) có hai nghiệm phân biệt

\(\Leftrightarrow\Delta'=m^2+5m+4>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>-1\\m< -4\end{matrix}\right.\)

Phương trình có hai nghiệm phân biệt \(x=-m-1\pm\sqrt{m^2+5m+4}\)

\(x=-m-1+\sqrt{m^2+5m+4}\Rightarrow y=2m+5-2\sqrt{m^2+5m+4}\)

\(\Rightarrow A\left(-m-1+\sqrt{m^2+5m+4};2m+5-2\sqrt{m^2+5m+4}\right)\)

\(x=-m-1-\sqrt{m^2+5m+4}\Rightarrow y=2m+5+2\sqrt{m^2+5m+4}\)

\(\Rightarrow B\left(-m-1-\sqrt{m^2+5m+4};2m+5+2\sqrt{m^2+5m+4}\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(-2\sqrt{m^2+5m+4};4\sqrt{m^2+5m+4}\right)\)

\(\Rightarrow AB=\sqrt{4\left(m^2+5m+4\right)+16\left(m^2+5m+4\right)}=2\sqrt{5\left(m^2+5m+4\right)}=4\sqrt{5}\)

\(\Leftrightarrow\sqrt{m^2+5m+4}=2\)

\(\Leftrightarrow m^2+5m=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=-5\left(tm\right)\end{matrix}\right.\)

27 tháng 12 2020

Xét phương trình hoành độ giao điểm của (d): y = -2x + 3 và 

(P) : x2 + 2mx - 3m = 0

x2 + 2mx - 3m = -2x + 3 

⇔ x2 + 2(m+1) - 3(m+1) = 0 (*)

Để (d) cắt (P) taị 2 điểm phân biệt thì (*) có hai nghiệm phân biệt. Khi đó Δ' > 0 

⇔ (m+1)2 + 3(m+1) > 0

⇔ (m+1)(m+4) > 0

⇔ m ∈ R \ (-4 ; -1) (!)

Do A,B là giao điểm của (d) và (P) nên hoành độ của chúng là nghiệm của (*)

Theo định lí Viet : \(\left\{{}\begin{matrix}x_A+x_B=-2m-2=-2\left(m+1\right)\\x_A.x_B=-3m-3=-3\left(m+1\right)\end{matrix}\right.\) 

Do A,B ∈ d nên hoành độ và tung độ của chúng thỏa mãn

y = -2x + 3 hay \(\left\{{}\begin{matrix}y_A=-2x_A+3\\y_B=-2x_B+3\end{matrix}\right.\)

Để giải được bài này thì mình sẽ sử dụng công thức tính độ dài của vecto AB (nếu bạn chưa học đến thì xin lỗi)

AB = |\(\overrightarrow{AB}\)| = 4\(\sqrt{5}\)

⇒ (xA - xB)2 + (yA - yB)2 = 80

⇒ (xA - xB)2 + (-2xA + 2xB)2 = 80

Sau đó bạn thay m vào rồi biến đổi, kết quả ta được

(m+1)(m+4) = 4 \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-5\end{matrix}\right.\)(thỏa mãn (!) )

Vậy tập hợp các giá trị của m thỏa mãn yêu cầu bài toán là 

M = {0 ; -5}

 

Bài 1:   a) Cho hàm số f(x) = (a- 1)x + b. Xác định hàm số biết f(-1) = 2014 ; f(2) = 2017b) Tìm m;n để đa thức P(x) = mx3 + (m + 2)x2 - (3n - 5)x - 4n đồng thời chia hết cho x + 1 và x - 3Bài 2: Cho đường thẳng (d): y = 4xviết phương trình đường thẳng (d1) song song với đường thẳng (d) và có tung độ gốc bằng 10Bài 3: Xác định a;b để đồ thị hàm số y = ax + b đi qua A(3;-1) và B(-3;2)Bài 4: Cho 2 hàm số bậc...
Đọc tiếp

Bài 1:   a) Cho hàm số f(x) = (a- 1)x + b. Xác định hàm số biết f(-1) = 2014 ; f(2) = 2017

b) Tìm m;n để đa thức P(x) = mx3 + (m + 2)x2 - (3n - 5)x - 4n đồng thời chia hết cho x + 1 và x - 3

Bài 2: Cho đường thẳng (d): y = 4x

viết phương trình đường thẳng (d1) song song với đường thẳng (d) và có tung độ gốc bằng 10

Bài 3: Xác định a;b để đồ thị hàm số y = ax + b đi qua A(3;-1) và B(-3;2)

Bài 4: Cho 2 hàm số bậc nhất y = x - m và y = -2x + m - 1

a) Xác định tọa độ giao điểm của đồ thị 2 hàm số khi m = 2

b) Vẽ đồ thị 2 hàm số trên khi m = 2

c) Tìm m để đồ thị 2 hàm số cắt nhau tại 1 điểm trên trục tung

Bài 5: Viết phương trình đường thẳng (d) có hệ số góc bằng 7 và đi qua điểm M(2;-1)

Bài 6: Cho 3 đường thẳng: (d1): y = -2x + 3; (d2): y = 3x - 2; (d3): y = m(x + 1) - 5

a) Tìm m để 3 đường thẳng đã cho đồng quy

b) Chứng minh rằng đường thẳng (d3) luôn đi qua 1 điểm cố định khi m thay đổi

 

0
19 tháng 12 2019

1/ta có: y = mx + 3 và y = (2m + 1)x - 5 là hai hs bậc nhất nên:

\(\hept{\begin{cases}m\ne0\\2m+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne0\\m\ne-\frac{1}{2}\end{cases}}}\)

Đồ thị của hai hs đã cho là 2 đường thẳng song song vs nhau khi và chỉ khi:

\(\hept{\begin{cases}m=2m+1\\3\ne-5\left(HiểnNhien\right)\end{cases}}\)

\(\Leftrightarrow m=-1\)(thỏa mãn)

kết hợp vs điều kiện, ta có m = -1 ; \(m\ne-\frac{1}{2}\)\(m\ne0\)thì đồ thị 2 hs là 2 đường thằng song song