K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2015

Bình phương hai vế đi bạn :))
Bài này bình phương được đấy ^^
Không liên quan nhưng tick cho mình nhé ^^

15 tháng 11 2015

kết quả : x = 0; x = 9 nha

24 tháng 11 2019

\(\left(x^2-3x+9\right)\left(x^2+5x+9\right)=9x^2\)

\(\Leftrightarrow x^4+5x^3+9x^2-3x^3-15x^2-27x+9x^2+45x+81=9x^2\)

\(\Leftrightarrow x^4+2x^3+3x^2+18x+81=9x^2\)

\(\Leftrightarrow x^4+2x^3+3x^2+18x+81-9x^2=0\)

\(\Leftrightarrow x^4+2x^2-6x^2+18x+81=0\)

\(\Leftrightarrow\left(x^3-x^2-3x+27\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x^2-4x+9\right)\left(x+3\right)\left(x+3\right)=0\)

Vì \(x^2-4x+9\ne0\) nên: 

\(\Rightarrow x+3=0\)

     \(x=-3\)

Vậy: nghiệm phương trình là: {-3}

3 tháng 11 2018

ĐKXĐ : \(x\ge-5\)

Lập phương 2 vế ta được :

\(\sqrt{\left(x+5\right)^3}=9x-9\)

Đặt \(\sqrt{x+5}=a\) . Phương trình trở thành :

\(a^3=9\left(a^2-6\right)\)

\(\Leftrightarrow a^3-9a^2+54=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a_1=3\\a_2=3+3\sqrt{3}\\a_3=3-3\sqrt{3}\end{matrix}\right.\)

Với \(a=3\) : \(\Leftrightarrow\sqrt{x+5}=3\Leftrightarrow x+5=9\Leftrightarrow x=4\)

Với \(a=3+3\sqrt{3}\Leftrightarrow\sqrt{x+5}=3+3\sqrt{3}\Leftrightarrow x+5=9+18\sqrt{3}+27\Leftrightarrow x=31+18\sqrt{3}\)

Với \(a=3-3\sqrt{3}\Leftrightarrow\sqrt{x+5}=3-3\sqrt{3}\Rightarrow a\in\varnothing\)

Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}-2\sqrt{16x+16}=\sqrt{x+1}-8\)

\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}-8\sqrt{x+1}-\sqrt{x+1}=-8\)

\(\Leftrightarrow\sqrt{x+1}=2\)

\(\Leftrightarrow x+1=4\)

hay x=3

5 tháng 8 2019

phương trình vô tỉ

5 tháng 8 2019

dùng sơ đồ hooc ne nha bn ! 

27 tháng 11 2021

\(a,ĐK:1\le x\le3\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{3-x}=b\end{matrix}\right.\left(a,b\ge0\right)\)

\(PT\Leftrightarrow a+b-ab=1\Leftrightarrow a+b-ab-1=0\\ \Leftrightarrow\left(a-1\right)\left(1-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=1\\3-x=1\end{matrix}\right.\Leftrightarrow x=2\left(tm\right)\)

\(b,ĐK:0\le x\le9\\ PT\Leftrightarrow9+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\\ \Leftrightarrow2\sqrt{-x^2+9x}-\left(-x^2+9x\right)=0\\ \Leftrightarrow\sqrt{-x^2+9x}\left(2-\sqrt{-x^2+9x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\\x^2-9x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\x=9\left(n\right)\\x=\dfrac{9+\sqrt{65}}{2}\left(n\right)\\x=\dfrac{9-\sqrt{65}}{2}\left(n\right)\end{matrix}\right.\)

 

NV
17 tháng 5 2019

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a\\\sqrt{x^2-9x+9}=b\end{matrix}\right.\) ta được hệ:

\(\left\{{}\begin{matrix}a+b=2x\\9a^2-b^2=8x^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=2x-a\\9a^2-b^2=8x^2\end{matrix}\right.\)

\(\Leftrightarrow9a^2-\left(2x-a\right)^2-8x^2=0\)

\(\Leftrightarrow2a^2+ax-3x^2=0\Leftrightarrow\left(a-x\right)\left(2a+3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=x\\2a=-3x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+1}=x\left(x\ge0\right)\\2\sqrt{x^2-x+1}=-3x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=x^2\\-5x^2-4x+4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{-2-2\sqrt{6}}{5}\end{matrix}\right.\)

NV
26 tháng 11 2018

ĐKXĐ: \(0\le x\le9\)

Bình phương 2 vế: \(9+2\sqrt{-x^2+9x}=-x^2+9x+9\)

Đặt \(\sqrt{-x^2+9x}=t\ge0\) pt trở thành:

\(t^2-2t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{-x^2+9x}=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-x^2+9x=0\\-x^2+9x-4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=9\\x=\dfrac{9-\sqrt{65}}{2}\\x=\dfrac{9+\sqrt{65}}{2}\end{matrix}\right.\)