giải pt x>=-9x=-9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bình phương hai vế đi bạn :))
Bài này bình phương được đấy ^^
Không liên quan nhưng tick cho mình nhé ^^
\(\left(x^2-3x+9\right)\left(x^2+5x+9\right)=9x^2\)
\(\Leftrightarrow x^4+5x^3+9x^2-3x^3-15x^2-27x+9x^2+45x+81=9x^2\)
\(\Leftrightarrow x^4+2x^3+3x^2+18x+81=9x^2\)
\(\Leftrightarrow x^4+2x^3+3x^2+18x+81-9x^2=0\)
\(\Leftrightarrow x^4+2x^2-6x^2+18x+81=0\)
\(\Leftrightarrow\left(x^3-x^2-3x+27\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x^2-4x+9\right)\left(x+3\right)\left(x+3\right)=0\)
Vì \(x^2-4x+9\ne0\) nên:
\(\Rightarrow x+3=0\)
\(x=-3\)
Vậy: nghiệm phương trình là: {-3}
ĐKXĐ : \(x\ge-5\)
Lập phương 2 vế ta được :
\(\sqrt{\left(x+5\right)^3}=9x-9\)
Đặt \(\sqrt{x+5}=a\) . Phương trình trở thành :
\(a^3=9\left(a^2-6\right)\)
\(\Leftrightarrow a^3-9a^2+54=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a_1=3\\a_2=3+3\sqrt{3}\\a_3=3-3\sqrt{3}\end{matrix}\right.\)
Với \(a=3\) : \(\Leftrightarrow\sqrt{x+5}=3\Leftrightarrow x+5=9\Leftrightarrow x=4\)
Với \(a=3+3\sqrt{3}\Leftrightarrow\sqrt{x+5}=3+3\sqrt{3}\Leftrightarrow x+5=9+18\sqrt{3}+27\Leftrightarrow x=31+18\sqrt{3}\)
Với \(a=3-3\sqrt{3}\Leftrightarrow\sqrt{x+5}=3-3\sqrt{3}\Rightarrow a\in\varnothing\)
Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}-2\sqrt{16x+16}=\sqrt{x+1}-8\)
\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}-8\sqrt{x+1}-\sqrt{x+1}=-8\)
\(\Leftrightarrow\sqrt{x+1}=2\)
\(\Leftrightarrow x+1=4\)
hay x=3
\(a,ĐK:1\le x\le3\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{3-x}=b\end{matrix}\right.\left(a,b\ge0\right)\)
\(PT\Leftrightarrow a+b-ab=1\Leftrightarrow a+b-ab-1=0\\ \Leftrightarrow\left(a-1\right)\left(1-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=1\\3-x=1\end{matrix}\right.\Leftrightarrow x=2\left(tm\right)\)
\(b,ĐK:0\le x\le9\\ PT\Leftrightarrow9+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\\ \Leftrightarrow2\sqrt{-x^2+9x}-\left(-x^2+9x\right)=0\\ \Leftrightarrow\sqrt{-x^2+9x}\left(2-\sqrt{-x^2+9x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\\x^2-9x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\x=9\left(n\right)\\x=\dfrac{9+\sqrt{65}}{2}\left(n\right)\\x=\dfrac{9-\sqrt{65}}{2}\left(n\right)\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a\\\sqrt{x^2-9x+9}=b\end{matrix}\right.\) ta được hệ:
\(\left\{{}\begin{matrix}a+b=2x\\9a^2-b^2=8x^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=2x-a\\9a^2-b^2=8x^2\end{matrix}\right.\)
\(\Leftrightarrow9a^2-\left(2x-a\right)^2-8x^2=0\)
\(\Leftrightarrow2a^2+ax-3x^2=0\Leftrightarrow\left(a-x\right)\left(2a+3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=x\\2a=-3x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+1}=x\left(x\ge0\right)\\2\sqrt{x^2-x+1}=-3x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=x^2\\-5x^2-4x+4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{-2-2\sqrt{6}}{5}\end{matrix}\right.\)
ĐKXĐ: \(0\le x\le9\)
Bình phương 2 vế: \(9+2\sqrt{-x^2+9x}=-x^2+9x+9\)
Đặt \(\sqrt{-x^2+9x}=t\ge0\) pt trở thành:
\(t^2-2t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{-x^2+9x}=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-x^2+9x=0\\-x^2+9x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=9\\x=\dfrac{9-\sqrt{65}}{2}\\x=\dfrac{9+\sqrt{65}}{2}\end{matrix}\right.\)