1/2*(x-4/5)+3/4x =5/12
giúp mình với mình đang cần gấp lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
1) \(\frac{3}{5}\div\frac{2x}{15}=\frac{1}{2}\div\frac{4}{5}\)
\(\Leftrightarrow\frac{9}{2x}=\frac{5}{8}\)
\(\Rightarrow10x=72\)
\(\Leftrightarrow x=\frac{36}{5}\)
2) \(-\frac{4}{2,5}\div\frac{3}{5}=\frac{1}{5}\div x\)
\(\Leftrightarrow\frac{1}{5}\div x=-\frac{8}{3}\)
\(\Rightarrow x=-\frac{3}{40}\)
3) \(0,12\div3=2x\div\frac{3}{5}\)
\(\Leftrightarrow\frac{1}{25}=\frac{10}{3}x\)
\(\Rightarrow x=\frac{3}{250}\)
\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).
ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).
Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)
Do đó x > 0 nên y > 0.
Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).
Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:
\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).
Dấu "=" xảy ra khi và chỉ khi a = b.
Áp dụng bất đẳng thức trên ta có:
\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)
\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)
Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4)
Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).
Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)
Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).
Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.
Thay x = y vào (2) ta được:
\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))
PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v
Áp dụng dãy tỉ số bằng nhau:
b.
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{-7}{7}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-1\right)=-2\\y=-5.\left(-1\right)=5\end{matrix}\right.\)
d.
\(\dfrac{4}{x}=\dfrac{7}{y}\Rightarrow\dfrac{y}{7}=\dfrac{x}{4}=\dfrac{y-x}{7-4}=\dfrac{-12}{3}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.\left(-4\right)=-16\\y=7.\left(-4\right)=-28\end{matrix}\right.\)
(2x+1).(y2-5)=12=1.12=12.1=6.2=2.6=3.4=4.3=...(cả số âm)
Rồi bạn lập bảng
VD:
2x+1 | 1 |
y2-5 | 12 |
x | 0 |
y | \sqrt{17}17loại |
`(2x+1)(y^2-5)=12=1.12=(-1).(-12)=2.6=(-2).(-6)=3.4=(-3).(-4)`
`2x+1` | `1` | `12` | `-1` | `-12` | `3` | `4` | `-3` | `-4` | `2` | `6` | `-2` | `-6` |
`y^2-5` | `12` | `1` | `-12` | `-1` | `4` | `3` | `-4` | `-3` | `6` | `2` | `-6` | `-2` |
`x` | `0` | `5,5` | `-1` | `-6,5` | `1` | `1,5` | `-2` | `-2,5` | `0,5` | `2,5` | `-1,5` | `-3,5` |
`y` | `\sqrt{17}` | L | L | L | `3` | L | `1` | L | L | L | L | L |
Vì `x;y` là số tự nhiên `=>x=1;y=3`
TL
S= ( 1+ 3+ 3^2+ 3^3+ 3^4+ 3^5+ 3^6+ 3^7+ 3^8+ 3^9)
3.S=3.( 1+ 3+ 3^2+ 3^3+ 3^4+ 3^5+ 3^6+ 3^7+ 3^8+ 3^9)
3S=3+3^2+3^3+....+3^10
3S-S=3+3^2+3^3+....+3^10-(1+ 3+ 3^2+ 3^3+ 3^4+ 3^5+ 3^6+ 3^7+ 3^8+ 3^9)
2S=3^10-1
S=3^10-1/2
HỌC TỐT NHÉ
\(\frac{1}{2}\times\left(x-\frac{4}{5}\right)+\frac{3}{4}x=\frac{5}{12}\)
\(\Leftrightarrow\frac{1}{2}x-\frac{2}{5}+\frac{3}{4}x=\frac{5}{12}\)
\(\Leftrightarrow\frac{1}{2}x+\frac{3}{4}x=\frac{5}{12}+\frac{2}{5}\)
\(\Leftrightarrow\frac{5}{4}x=\frac{49}{60}\)
\(\Leftrightarrow x=\frac{49}{75}\)
Vậy \(x=\frac{49}{75}\)
bạn ơi sao lại có 2/5 vâỵ