Tìm số nguyên tố a để 4a + 11 là số nguyên tố nhỏ hơn 30
Tìm số nguyên tố b để 4b + 1 là số nguyên tố nhỏ hơn 30
GIẢI GIÚP MK NHA AI NHANH MK TICK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4a+11<30
suy ra 4.a<30 (1)
=>a={1;2;3;4;5;6;7} (2)
mà a={2;3} mới thỏa mãn các điều kiện (1) và(2)
=>a={2; 3}
vì với a là số nguyên tố thì 4a +11 >=4.2+11=19 (vì 4a +11 nhỏ nhất khi a nhỏ nhất =>a=2)
các số nguyên tố <30 và lớn hơn 15 là: 19;23;29
* nếu 4a +11=19 =>a=2 (thỏa mãn)
* nếu 4a +11=23 =>4a=12=>a=3(thỏa mãn)
* nếu 4a +11=29 =>4a=18=>a=18/4=9/2(không thỏa mãn)
vây a thuộc {2;3}
Các số nguyên tố nhỏ hơn 30:
1;2;3;5;7;11;13;17;19;23;29
loại các số 1;2;3;5;7 Vì ko tính đc
=> 4a +11=11=>a=0(loại)
=> 4a+11=13=>a=1/2(loại)
=> 4a+11=17=>a=3/2(loại)
=> 4a+11=19=>a=2
=>4a+11=23=>a=3
=>4a +11=29=.a=9/2(loại)
Vậy a=2 hoặc a=3 thỏa mãn điêù kiện 4a +11 là số nguyên tố bé hơn 30
cac so nguyen to nho hon 30 la : 2; 3; 5; 7; 11; 13; 17 ; 19 ; 23; 29
4a = 4. a
tu do thi ban co the suy ra dc
Đặt A=4a+11
+) Với a = 1 => A= 4*1+11=15 => ko là số nguyên tố
+) Với a = 2 =>A= 4*2+11=19 =>là số nguyên tố
+) Với a = 3 =>A= 4*3+11=23 =>là số nguyên tố
+) Với a>3 thì a có dạng 3k+1 hoặc 3k+2
+) Với a= 3k+1 => A=4*(3k+1)+11=12k+15 chia hết cho 3 =>ko là số nguyên tố
+) Với a= 3k+2 => A=4*(3k+2)+11 => chia hết cho 3k+2 do 11 = 3*3+2 tức, có dạng 3k+2
Vậy với a là các số lớn hơn 3 đều không là số nguyên tố
Vậy a thuộc 2 và 3
ta có a là stn suy ra 4a+11 lớn hơn 11(1)
ta có 4a+11=4a+8+3=4(a+2)+3
suy ra 4a+11 chia 4 dư 3(2)
ta có 4a+11 là số nguyên tố nhò hơn 30(3)
từ (1),(2),(3)=>4a+11 thuộc 19,23
=>4a thuộc 8,12
=> a thuộc 2,3
bạn vào link này tham khảo nhé
Câu hỏi của oreen - Toán lớp 6 - Học toán với OnlineMath
Chúc học tốt
Vì với a là số nguyên tố thì 4a +11 >=4.2+11=19 (vì 4a +11 nhỏ nhất khi a nhỏ nhất =>a=2)
Các số nguyên tố <30 và lớn hơn 15 là: 19;23;29
* Nếu 4a +11=19 =>a=2 (thỏa mãn)
* Nếu 4a +11=23 =>4a=12=>a=3(thỏa mãn)
* Nếu 4a +11=29 =>4a=18=>a=18/4=9/2(không thỏa mãn)
Vây a thuộc {2;3}
- Nếu a = 2 thì 4a + 11 = 8 + 11 = 19, là số nguyên tố.
- Nếu a = 3 thì 4a + 11 = 12 + 11 = 23, là số nguyên tố.
- Nếu a = 5 thì 4a + 11 = 20 + 11 = 31, là số nguyên tố.
- Nếu a = 7 thì 4a + 11 = 28 + 11 = 39, là hợp số.
- Nếu a = 11 thì 4a + 11 = 44 + 11 = 55, là hợp số.
- Nếu a = 13 thì 4a + 11 = 52 + 11 = 63, là hợp số.
- Nếu a = 17 thì 4a + 11 = 68 + 11 = 79, là số nguyên tố lớn hơn 60.
Vậy, a c {2 ; 3 ; 5}
Ta có
\(4a+1< 30\Leftrightarrow4a< 29\)
\(\Leftrightarrow a< 7,25\)
Vì a là số nguyên tố => \(a\in\left\{2;3;5;7\right\}\)
Xét :
\(\Rightarrow4a+1=4.2+1=9\)(là hợp số)
\(\Rightarrow\)Loại
\(\Rightarrow4a+1=4.3+1=13\)(là số nguyên tố)
\(\Rightarrow\)Chọn
\(\Rightarrow\orbr{\begin{cases}a=3k+1\\a=3k+2\end{cases}}\)\(\left(k\inℕ^∗\right)\)
Với \(a=3k+1\left(k\inℕ^∗\right)\)
\(\Rightarrow4a+1=4\left(3k+1\right)+1=12k+5< 30\)
\(\Rightarrow12k< 25\)
\(\Rightarrow k\le2\left(1\right)\)
Vì \(a>\text{3}\)và a nguyên tố
\(\Rightarrow a>4\)
\(\Rightarrow3k+1>4\)
\(\Rightarrow3k>3\)
\(\Rightarrow k>1\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\): \(\Rightarrow k=2\)
\(\Rightarrow a=3.2+1=7\)
Thử lại : \(4a+1=4.7+1=29\)(là số nguyên tố)
\(\Rightarrow\)Thỏa mãn
Với \(a=3k+2\left(k\inℕ^∗\right)\)
\(\Rightarrow4a+1=4\left(3k+2\right)+1=12k+9=3\left(4k+3\right)⋮3\)
Vì \(a>3\)\(\Rightarrow4a+1>3\)
\(\Rightarrow4a+1\)là hợp số
\(\Rightarrow\)Loại
Vậy \(a\in\){\(3;7\)}
4a+11 la so ngto suy ra 4a+11 la so le
suy ra 4a la so chan
Vi 4a+11 < 30 suy ra 4a < 19 suy ra a co the = 1,2,3,4
Ma 4a+11 la so ngto suy ra a=2