K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

Bước đầu: Áp dụng bđt Cô-si cho 3 số dương có \(a+b+c\ge3\sqrt[3]{abc}\)và \(a^3b+b^3c+c^3a\ge3\sqrt[3]{a^4b^4c^4}=3abc\sqrt[3]{abc}\)

Biến đổi tương đương:

BĐT <=> \(a^3b+b^3c+c^3a\ge3abc\sqrt[3]{abc}\)(luôn đúng)

19 tháng 8 2017

tc \(a+b+c\ge3\sqrt[3]{abc}\)

\(ab+ac+bc\ge3\sqrt[3]{a^2b^2c^2}\)

\(a^3b+b^3c+c^3a\ge3\sqrt[3]{a^3b^3c^3.a.b.c}=abc.3\sqrt[3]{abc}\ge abc\left(a+b+c\right)\)

=> dpcm

22 tháng 3 2021

Sử dụng Cô si cho 2 số dương ta được

                        \dfrac{a^3b}{c}+\dfrac{a^3c}{b}=a^3\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\ge2a^3ca3b​+ba3c​=a3(cb​+bc​)≥2a3

Làm tương tự với hai cặp số hạng còn lại và cộng các bất đẳng thức nhận được ta có

          \dfrac{a^3b}{c}+\dfrac{a^3c}{b}+\dfrac{b^3c}{a}+\dfrac{b^3a}{c}+\dfrac{c^3b}{a}+\dfrac{c^3a}{b}\ge2\left(a^3+b^3+c^3\right)ca3b​+ba3c​+ab3c​+cb3a​+ac3b​+bc3a​≥2(a3+b3+c3)  (1)

Lại theo bất đẳng thức Cô si ta được     

                                        a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abca3+b3+c3≥33a3b3c3​=3abc      (2)

Từ (1) và (2) suy ra đpcm.  

Theo bất đẳng thức cô si ta có 

\(\dfrac{a^3b}{c}\) + \(\dfrac{a^3c}{b}\) = a^3(b/c+c/b) ≥ 2a^3

Tương tự với 1 cặp số hạng còn lại và cộng các bất đẳng thức nhận được ta có 

a^3b/c+ a^3c/b + b^3c/a+b^3a/c + c^3b/a+ c^3a/b ≥ 2(a^3+b^3+c^3) (1)

Theo bất đẳng thức cô si ta được 

a^3 + b^3 +c^3 ≥ 3\(\sqrt{a^3b^3c^3}=3abc (2) \)

Từ (1) và (2) suy ra đpcm 

NV
26 tháng 3 2023

BĐT cần chứng minh tương đương:

\(\dfrac{a}{a+\sqrt{3a+bc}}+\dfrac{b}{b+\sqrt{3b+ca}}+\dfrac{c}{c+\sqrt{3c+ab}}\le1\)

Ta có:

\(\dfrac{a}{a+\sqrt{3a+bc}}=\dfrac{a}{a+\sqrt{a\left(a+b+c\right)+bc}}=\dfrac{a}{a+\sqrt{\left(a+b\right)\left(c+a\right)}}\le\dfrac{a}{a+\sqrt{\left(\sqrt{ab}+\sqrt{ac}\right)^2}}\)

\(=\dfrac{a}{a+\sqrt{ab}+\sqrt{ac}}=\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

Tương tự:

\(\dfrac{b}{b+\sqrt{3b+ca}}\le\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

\(\dfrac{c}{c+\sqrt{3c+ab}}\le\dfrac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

Cộng vế:

\(\dfrac{a}{a+\sqrt{3a+bc}}+\dfrac{b}{b+\sqrt{3b+ca}}+\dfrac{c}{c+\sqrt{3c+ab}}\le\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

16 tháng 12 2018

Theo tc của DTSBN

\(\frac{a+b-3c}{c}=\frac{b+c-3a}{a}=\frac{c+a-3b}{b}=\frac{a+b-3c+b+c-3a+c+a-3b}{c+a+b}\)

                                                                                       \(=\frac{-a-b-c}{a+b+c}=-1\)

\(\Rightarrow\hept{\begin{cases}a+b-3c=-c\\b+c-3a=-a\\c+a-3b=-b\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)

\(\Rightarrow a=b=c\left(đpcm\right)\)

16 tháng 9 2016

a^3/b +a^3/b +b^2 >=3.a^2 
=>2a^3/b +b^2>=3a^2 
tuong tu 
2b^3/c +c^2 >=3.b^2 
2c^3/a +a^2 >=3.c^2 
cog lai ta dc 
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2) 
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2 
mat khc 
a^2+b^2+c^2>=ab+bc+ca 
nen 
a^3/b+b^3/c+c^3/a >=ab+bc+ca 
dau = xay ra khi a=b=c

k nha

10 tháng 4 2018

a^3/b +a^3/b +b^2 >=3.a^2 
=>2a^3/b +b^2>=3a^2 
tuong tu 
2b^3/c +c^2 >=3.b^2 
2c^3/a +a^2 >=3.c^2 
cog lai ta dc 
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2) 
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2 
mat khc 
a^2+b^2+c^2>=ab+bc+ca 
nen 
a^3/b+b^3/c+c^3/a >=ab+bc+ca 
dau = xay ra khi a=b=c