Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a, b, c > 0. Chứng minh \(\dfrac{a}{3a+b+c}+\dfrac{b}{3b+a+c}+\dfrac{c}{3c+a+b}\le\dfrac{3}{5}\)
a^3/b +a^3/b +b^2 >=3.a^2
=>2a^3/b +b^2>=3a^2
tuong tu
2b^3/c +c^2 >=3.b^2
2c^3/a +a^2 >=3.c^2
cog lai ta dc
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2)
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2
mat khc
a^2+b^2+c^2>=ab+bc+ca
nen
a^3/b+b^3/c+c^3/a >=ab+bc+ca
dau = xay ra khi a=b=c
k nha
a^3/b +a^3/b +b^2 >=3.a^2
=>2a^3/b +b^2>=3a^2
tuong tu
2b^3/c +c^2 >=3.b^2
2c^3/a +a^2 >=3.c^2
cog lai ta dc
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2)
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2
mat khc
a^2+b^2+c^2>=ab+bc+ca
nen
a^3/b+b^3/c+c^3/a >=ab+bc+ca
dau = xay ra khi a=b=c
Áp dụng BĐT Cauchy cho 2 số dương ta được :
\(\dfrac{a^2}{b+3c}+\dfrac{b+3c}{16}\ge2\sqrt{\dfrac{a^2}{b+3c}\times\dfrac{b+3c}{16}}=\dfrac{2a}{4}\)
Suy ra \(\dfrac{a^2}{b+3c}\ge\dfrac{2a}{4}-\dfrac{b+3c}{16}\)
Cmtt ta cũng được :
\(\dfrac{b^2}{c+3a}\ge\dfrac{2b}{4}-\dfrac{c+3a}{16}\) \(\dfrac{c^2}{a+3b}\ge\dfrac{2c}{4}-\dfrac{a+3b}{16}\)
Khi đó :
\(\dfrac{a^2}{b+3c}+\dfrac{b^2}{c+3a}+\dfrac{c^2}{a+3b}\ge\dfrac{2a}{4}-\dfrac{b+3c}{16}+\dfrac{2b}{4}-\dfrac{c+3a}{16}+\dfrac{2c}{4}-\dfrac{a+3b}{16}\)
mà \(\dfrac{2a}{4}-\dfrac{b+3c}{16}+\dfrac{2b}{4}-\dfrac{c+3a}{16}+\dfrac{2c}{4}-\dfrac{a+3b}{16}=\dfrac{a+b+c}{4}\)
Vậy \(\dfrac{a^2}{b+3c}+\dfrac{b^2}{c+3a}+\dfrac{c^2}{a+3b}\ge\dfrac{a+b+c}{4}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow\dfrac{a^2}{b+3c}+\dfrac{b^2}{c+3a}+\dfrac{c^2}{a+3b}\ge\dfrac{\left(a+b+c\right)^2}{4\left(a+b+c\right)}=\dfrac{a+b+c}{4}\) (đpcm)
Dấu " = " xảy ra khi \(a=b=c\)
Ta có:\(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ac}\ge\dfrac{9}{1+1+1+ab+bc+ca}\)(AM-GM)
Lại có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+a^2+b^2+c^2}=\dfrac{9}{6}=\dfrac{3}{2}\)
\(\Rightarrowđpcm\)
Cháu làm cho bác câu 2 thôi,câu 3 THANGDZ làm rồi sợ mất bản quyền lắm:v
Lời giải:
Áp dụng liên tiếp bất đẳng thức AM-GM và Cauchy-Schwarz ta có:
\(\dfrac{a}{a+2b+3c}+\dfrac{b}{b+2c+3a}+\dfrac{c}{c+2a+3b}\)
\(=\dfrac{a^2}{a^2+2ab+3ac}+\dfrac{b^2}{b^2+2bc+3ab}+\dfrac{c^2}{c^2+2ac+3bc}\)
\(\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+5ab+5bc+5ac}\)
\(=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+3\left(ab+bc+ac\right)}\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\left(a+b+c\right)^2}=\dfrac{1}{2}\)
\(P=\frac{2a+3b+3c-1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c+1}{2017+c}\)
\(=\frac{6047-a}{2015+a}+\frac{6048-b}{2016+b}+\frac{6049-c}{2017+c}\)
\(=\frac{8062}{2015+a}+\frac{8064}{2016+b}+\frac{8066}{2017+c}-3\)
\(\ge\frac{\left(\sqrt{8062}+\sqrt{8064}+\sqrt{8066}\right)^2}{2015+2016+2017+a+b+c}-3=\frac{\left(\sqrt{8062}+\sqrt{8064}+\sqrt{8066}\right)^2}{8064}-3\)
Dấu = xảy ra khi ....