K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

Xem lại đề nhé

4 tháng 7 2017

cảm ơn bạn, mình đã sửa đề

1 tháng 10 2023

a) \(\dfrac{y}{x}\cdot\sqrt{\dfrac{x^2}{y^4}}\)

\(=\dfrac{y}{x}\cdot\dfrac{\sqrt{x^2}}{\sqrt{\left(y^2\right)^2}}\) 

\(=\dfrac{y}{x}\cdot\dfrac{x}{y^2}\)

\(=\dfrac{1}{y}\)

b) \(\dfrac{5}{2}x^3y^3\cdot\sqrt{\dfrac{16}{x^4y^8}}\)

\(=\dfrac{5}{2}x^3y^3\cdot\dfrac{\sqrt{16}}{\sqrt{\left(x^2y^4\right)^2}}\)

\(=\dfrac{5}{2}x^3y^3\cdot\dfrac{4}{x^2y^4}\)

\(=\dfrac{20x^3y^3}{2x^2y^4}\)

\(=\dfrac{10x}{y}\)

c) \(ab^2\sqrt{\dfrac{3}{a^2b^4}}\)

\(=ab^2\dfrac{\sqrt{3}}{\sqrt{\left(ab^2\right)^2}}\)

\(=ab^2\cdot\dfrac{\sqrt{3}}{ab^2}\)

\(=\sqrt{3}\)

1 tháng 10 2023

\(a,\dfrac{y}{x}\cdot\sqrt{\dfrac{x^2}{y^4}}\left(y\ge0;x,y\ne0\right)\) (sửa đề)

\(=\dfrac{y}{x}\cdot\dfrac{\sqrt{x^2}}{\sqrt{y^4}}\)

\(=\dfrac{y}{x}\cdot\dfrac{x}{\sqrt{\left(y^2\right)^2}}\)

\(=\dfrac{y}{x}\cdot\dfrac{x}{y^2}\)

\(=\dfrac{1}{y}\)

\(---\)

\(b,\dfrac{5}{2}x^3y^3\cdot\sqrt{\dfrac{16}{x^4y^8}}\left(x,y\ne0\right)\)

\(=\dfrac{5}{2}x^3y^3\cdot\dfrac{\sqrt{16}}{\sqrt{x^4y^8}}\)

\(=\dfrac{5x^3y^3}{2}\cdot\dfrac{4}{x^2y^4}\)

\(=\dfrac{5x\cdot2}{y}\)

\(=\dfrac{10x}{y}\)

\(---\)

\(c,ab^2\sqrt{\dfrac{3}{a^2b^4}}\left(a>0;b\ne0\right)\) (sửa đề)

\(=ab^2\cdot\dfrac{\sqrt{3}}{\sqrt{a^2b^4}}\)

\(=\dfrac{ab^2\sqrt{3}}{\sqrt{\left(ab^2\right)^2}}\)

\(=\dfrac{ab^2\sqrt{3}}{ab^2}\)

\(=\sqrt{3}\)

#\(Toru\)

1 tháng 8 2018

Bài 1:

a. ta có \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

= \(\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x+2\sqrt{xy}-y\)

= \(x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)

=\(\sqrt{xy}\)

b.ĐK: x ≠ 1

Ta có: A= \(\sqrt{\dfrac{x+2\sqrt{x}+1}{x-2\sqrt{x}+1}}\)=\(\sqrt{\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)^2}}\)=\(\dfrac{\sqrt{x}+1}{\left|\sqrt{x}-1\right|}\)

*Nếu \(\sqrt{x}-1\ge0\Rightarrow\sqrt{x}\ge1\)

⇒ A = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

*Nếu \(\sqrt{x}-1< 0\Rightarrow\sqrt{x}< 1\)

⇒ A=\(\dfrac{\sqrt{x}+1}{-\sqrt{x}+1}\)

c.Ta có:

NV
5 tháng 5 2020

ĐKXĐ: ...

\(\sqrt{x+2}=\sqrt{y^2+2y+3}-\left(\sqrt{x}-1\right)+y\)

\(\sqrt{x}+\sqrt{x+2}=\sqrt{\left(y+1\right)^2+2}+y+1\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\y+1=b\end{matrix}\right.\) \(\Rightarrow a+\sqrt{a^2+2}=b+\sqrt{b^2+2}\)

\(\Leftrightarrow a-b+\frac{\left(a-b\right)\left(a+b\right)}{\sqrt{a^2+2}+\sqrt{b^2+2}}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\\sqrt{a^2+2}+\sqrt{b^2+2}+a+b=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}=y+1\)

Thay vào pt đầu:

\(y^2-5\left(y+1\right)+5=0\Rightarrow...\)

a: \(=\dfrac{\left(1-\sqrt{2}\right)^2}{1-\sqrt{2}}=1-\sqrt{2}\)

b: \(=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{x-y}=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

d: \(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{x-y}=\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)