K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

Hình như đề sai rồi

4 tháng 7 2017

đúng đề mà bạn

AH
Akai Haruma
Giáo viên
4 tháng 7 2017

Okay vậy là sửa đề thành \(x+y+z=0\) nhé.

Thử nhiều lần kết luận là bài toán có thể chứng minh chặt hơn nữa là \(\frac{(x^2+y^2+z^2)^3}{(x^3+y^3+z^3)^2}\geq 6\)

Giải như sau:

Do có \(3\) số nên theo định lý Dirichlet tồn tại hai số cùng dấu. Giả sử hai số đó là \(x,y\) thì \(xy\geq 0\)

Dựa vào điều kiện đề bài ta dễ có \(x^3+y^3+z^3=3xyz\) , nên

\(P=\frac{(x^2+y^2+z^2)^3}{(x^3+y^3+z^3)^2}=\frac{8(x^2+y^2+xy)^3}{9x^2y^2(x+y)^2}\)

Đặt \(\left\{\begin{matrix} x^2+y^2=a\\ xy=b\end{matrix}\right.\Rightarrow P=\frac{8(a+b)^3}{9b^2(a+2b)}\) .

Ta CM \(P\geq 6\Leftrightarrow 4a^3+12a^2b\geq 15ab^2+50b^3\) \((1)\)

\(x^2+y^2\geq 2xy\rightarrow a\geq 2b\geq 0\). Vì vậy:

\(\left\{\begin{matrix} 4a^3+12a^2b=4a.a^2+12ab.a\geq 16ab^2+24ab^2=40ab^2\\ 15ab^2+50b^3\leq 15ab^2+25ab^2=40ab^2\end{matrix}\right.\)

Do đó \((1)\) đúng, ta có đpcm.

AH
Akai Haruma
Giáo viên
4 tháng 7 2017

Bài toán sai ngay với $x=y=z=\frac{1}{3}$

7 tháng 7 2021

Ta có: \(\frac{x^3+y^3+z^3-3xyz}{x+y+z}\)

\(=\frac{\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz}{x+y+z}\)

\(=\frac{\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)}{x+y+z}\)

\(=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-yz-zx-3xy\right)}{x+y+z}\)

\(=x^2+y^2+z^2-xy-yz-zx=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\left(\forall x,y,z\right)\)

=> đpcm

4 tháng 10 2019

ta có thể cm x^3+y^3+z^3=3xyz =>(x+y+z)(a^2+b^2+c^2-ab-ac-bc)=0

=>a^2+b^2+c^2-ab-ac-bc=0

nhân cả 2 vế với 2 ta đc

2.(x^2+y^2+z^2-xz-yz-yx)=2.0=0

=2x^2+2y^2+2z^2-2xy-2xz-2yz

=>(y^2-2yx+x^2)+(y^2-2xz+z^2)+(x^2-2xz+z^2)=0

<=> (y-x)^2+(y-z)^2+(x-z)^2=0

mà ta lại có  (y-x)^2>=0 ;  (y-z)^2>=0 ;  (x-z)^2>=0

 và (y-x)^2+(y-x)^2+(x-z)^2=0

 <=>(y-x)^2=0<=>y=x

  <=>(y-z)^2=0 <=>y=z

  <=>(x-z)^2=0<=>x=z

=>x=y=z

27 tháng 1 2016

Hỏi đáp Toán

23 tháng 11 2019

Ta có:

\(x^4+y^4\ge x^3y+xy^3\Rightarrow2\left(x^4+y^4\right)\ge x^4+y^4+x^3y+xy^3=\left(x^3+y^3\right)\left(x+y\right)\)

\(\Rightarrow\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)

Σ\(\frac{x^4+y^4}{x^3+y^3}\)\(\ge x+y+z=2008\)