K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2023

\(E=-4x^2+x+1\)

\(\Rightarrow E=-4\left(x^2-\dfrac{x}{4}\right)+1\)

\(\Rightarrow E=-4\left(x^2-\dfrac{x}{4}+\dfrac{1}{64}\right)+1+\dfrac{1}{16}\)

\(\Rightarrow E=-4\left(x-\dfrac{1}{8}\right)^2+\dfrac{17}{16}\)

 mà \(-4\left(x-\dfrac{1}{8}\right)^2\le0,\forall x\)

\(\Rightarrow E=-4\left(x-\dfrac{1}{8}\right)^2+\dfrac{17}{16}\le\dfrac{17}{16}\)

\(\Rightarrow GTLN\left(E\right)=\dfrac{17}{16}\left(tạix=\dfrac{1}{8}\right)\)

19 tháng 8 2023

\(F=5x-3x^2+6\)

\(\Rightarrow F=-3\left(x^2-\dfrac{5x}{3}\right)+6\)

\(\Rightarrow F=-3\left(x^2-\dfrac{5x}{3}+\dfrac{25}{36}\right)+6+\dfrac{25}{12}\)

\(\Rightarrow F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{12}\)

mà \(-3\left(x-\dfrac{5}{6}\right)^2\le0,\forall x\)

\(\Rightarrow F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{12}\le\dfrac{97}{12}\)

\(\Rightarrow GTLN\left(F\right)=\dfrac{97}{12}\left(tạix=\dfrac{5}{6}\right)\)

19 tháng 8 2023

Tìm giá trị nhỏ nhất của biểu thức:

a) Ta có: 

\(M=2x^2+4x+7\)

\(M=2\cdot\left(x^2+2x+\dfrac{7}{2}\right)\)

\(M=2\cdot\left(x^2+2x+1+\dfrac{5}{2}\right)\)

\(M=2\cdot\left[\left(x+1\right)^2+2,5\right]\)

\(M=2\left(x+1\right)^2+5\)

Mà: \(2\left(x+1\right)^2\ge0\forall x\) nên:

\(M=2\left(x+1\right)^2+5\ge5\forall x\)

Dấu "=" xảy ra:

\(2\left(x+1\right)^2+5=5\Leftrightarrow2\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy: \(M_{min}=5\) khi \(x=-1\)

b) Ta có:

\(N=x^2-x+1\)

\(N=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(N=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Mà: \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\) nên \(N=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=" xảy ra: 

\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy: \(N_{min}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)

19 tháng 8 2023

Tìm giá trị lớn nhất của biểu thức

a) Ta có: 

\(E=-4x^2+x-1\)

\(E=-\left(4x^2-x+1\right)\)

\(E=-\left[\left(2x\right)^2-2\cdot2x\cdot\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{15}{16}\right]\)

\(E=-\left[\left(2x-\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]\)

Mà: \(\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\ge\dfrac{15}{16}\forall x\) nên 

\(\Rightarrow E=-\left[\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]\le-\dfrac{15}{16}\forall x\)

Dấu "=" xảy ra:

\(-\left[\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]=-\dfrac{15}{16}\Leftrightarrow-\left(2x+\dfrac{1}{4}\right)^2-\dfrac{15}{16}=-\dfrac{15}{16}\)

\(\Leftrightarrow-\left(2x+\dfrac{1}{4}\right)^2=0\Leftrightarrow2x-\dfrac{1}{4}=0\Leftrightarrow x=\dfrac{1}{16}\)

Vậy: \(E_{max}=-\dfrac{15}{16}\) khi \(x=\dfrac{1}{16}\)

b) Ta có:

\(F=5x-3x^2+6\)

\(F=-3x^2+5x-6\)

\(F=-\left(3x^2-5x-6\right)\)

\(F=-3\left(x^2-\dfrac{5}{3}x-2\right)\)

\(F=-3\left[\left(x-\dfrac{5}{6}\right)^2-\dfrac{97}{36}\right]\)

\(F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}\)

Mà: \(-3\left(x-\dfrac{5}{6}\right)^2\le0\forall x\) nên:

\(F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}\le\dfrac{97}{36}\forall x\)

Dấu "=" xảy ra:

\(-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}=\dfrac{97}{36}\Leftrightarrow-3\left(x-\dfrac{5}{6}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{5}{6}=0\Leftrightarrow x=\dfrac{5}{6}\)

Vậy: \(F_{max}=\dfrac{97}{36}\) khi \(x=\dfrac{5}{6}\)

8 tháng 1 2019

2 tháng 6 2021

`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`

2 tháng 6 2021

16+5=23 :))

1:

a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)

Dấu = xảy ra khi x=0

b: \(B=\sqrt{x+8}-7>=-7\)

Dấu = xảy ra khi x=-8

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Tính giá trị nhỏ nhất:

\(A=x^2-4x+1=(x^2-4x+4)-3=(x-2)^2-3\)

Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $A=(x-2)^2-3\geq 0-3=-3$

Vậy $A_{\min}=-3$

Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$

$B=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 0+10=10$
Vậy $B_{\min}=10$ 

Giá trị này đạt tại $(2x+1)^2=0\Leftrightarrow x=-\frac{1}{2}$
$C=(x-1)(x+3)(x+2)(x+6)$

$=(x-1)(x+6)(x+3)(x+2)$
$=(x^2+5x-6)(x^2+5x+6)$

$=(x^2+5x)^2-36\geq 0-36=-36$

Vậy $C_{\min}=-36$. Giá trị này đạt $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

 

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Tìm giá trị lớn nhất:

$D=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$

Vì $(x+4)^2\geq 0, \forall x\in\mathbb{R}$ nên $D=21-(x+4)^2\leq 21$

Vậy $D_{\max}=21$. Giá trị này đạt tại $(x+4)^2=0\Leftrightarrow x=-4$

$E=4x-x^2+1=5-(x^2-4x+4)=5-(x-2)^2\leq 5$

Vậy $E_{\max}=5$. Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$

 

Bài 1:

a) x2x≠2

Bài 2:

a) x0;x5x≠0;x≠5

b) x210x+25x25x=(x5)2x(x5)=x5xx2−10x+25x2−5x=(x−5)2x(x−5)=x−5x

c) Để phân thức có giá trị nguyên thì x5xx−5x phải có giá trị nguyên.

=> x=5x=−5

Bài 3:

a) (x+12x2+3x21x+32x+2)(4x245)(x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)

=(x+12(x1)+3(x1)(x+1)x+32(x+1))2(2x22)5=(x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5

=(x+1)2+6(x1)(x+3)2(x1)(x+1)22(x21)5=(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5

=(x+1)2+6(x2+3xx3)(x1)(x+1)2(x1)(x+1)5=(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5

=[(x+1)2+6(x2+2x3)]25=[(x+1)2+6−(x2+2x−3)]⋅25

=[(x+1)2+6x22x+3]25=[(x+1)2+6−x2−2x+3]⋅25

=[(x+1)2+9x22x]25=[(x+1)2+9−x2−2x]⋅25

=2(x+1)25+18525x245x=2(x+1)25+185−25x2−45x

=2(x2+2x+1)5+18525x245x=2(x2+2x+1)5+185−25x2−45x

=2x2+4x+25+18525x245x=2x2+4x+25+185−25x2−45x

=2x2+4x+2+18525x245x=2x2+4x+2+185−25x2−45x

=2x2+4x+20525x245x=2x2+4x+205−25x2−45x

c) tự làm, đkxđ: x1;x1

19 tháng 12 2019

ê k bn với mk ik

😘 😘 😘 😘

3 tháng 3 2019

Alo đề nghị viết đề một cách chính xác 

30 tháng 6 2019

Đáp án C

14 tháng 4 2017