Bài 1 : Tính A= Sin mũ 2 10 độ + Cos mũ 2 20 độ + Sin mũ 2 80 độ + Sin mũ 2 70 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=sin^210^0+sin^280^0+cos^220^0+sin^270^0\)
\(=sin^210^0+cos^210^0+sin^270^0+sin^270^0\)
\(=2\cdot sin^270^0+1\)
b: \(=sin^215^0+sin^275^0+sin^235^0+sin^255^0\)
\(=sin^215^0+cos^215^0+sin^235^0+cos^235^0\)
=1+1
=2
\(A=sin^210^0+sin^280^0+cos^220^0+sin^270^0\)
\(=sin^210^0+cos^210^0+sin^270^0+sin^270^0\)
\(=2sin^270^0+1\)
\(B=sin^215^0+sin^275^0+sin^235^0+sin^255^0\)
\(=sin^215^0+cos^215^0+sin^235^0+cos^235^0\)
=1+1
=2
\(A=\frac{sina+cosa}{cosa-sina}=\frac{\frac{sina}{cosa}+\frac{cosa}{cosa}}{\frac{cosa}{cosa}-\frac{sina}{cosa}}=\frac{tana+1}{1-tana}=\frac{5+1}{1-5}=...\)
\(B=\frac{8cos^3a-2sin^3a+cosa}{2cosa-sin^3a}\) để làm được câu này chỉ cần nhớ đến công thức: \(\frac{1}{cos^2a}=1+tan^2a\)
\(B=\frac{\frac{8cos^3a}{cos^3a}-\frac{2sin^3a}{cos^3a}+\frac{cosa}{cosa}.\frac{1}{cos^2a}}{\frac{2cosa}{cosa}.\frac{1}{cos^2a}-\frac{sin^3a}{cos^3a}}=\frac{8-2tan^3a+1+tan^2a}{2\left(1+tan^2a\right)-tan^3a}=\frac{9-2tan^3a+tan^2a}{2+2tan^2a-tan^3a}=\frac{9-2.5^3+5^2}{2+2.5^2-5^3}=...\)
A = ( sin2 10o + sin2 80o) + (sin2 20o + sin2 70o) + ...+ (sin240o + sin2 50o)
A = ( sin2 10o + cos2 10o) + (sin2 20o + cos2 20o) + ...+ (sin240o + cos2 40o)
A = 1 + 1 + 1 + 1 = 4 ( Vì ( sin2 a + cos2 a = 1 với mọi a)
Bài làm
A = ( sin2 10o + sin2 80o) + (sin2 20o + sin2 70o) + ...+ (sin240o + sin2 50o)
A = ( sin2 10o + cos2 10o) + (sin2 20o + cos2 20o) + ...+ (sin240o + cos2 40o)
A = 1 + 1 + 1 + 1 = 4
hok tốt
a/ \(sin^4x-cos^4x=1\)
\(\Leftrightarrow\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)=1\)
\(\Leftrightarrow-cos2x=1\)
\(\Rightarrow cos2x=-1\)
\(\Rightarrow2x=\pi+k2\pi\)
\(\Rightarrow x=\frac{\pi}{2}+k\pi\)
b/ \(sin^4x+cos^4x=1\)
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=1\)
\(\Leftrightarrow sin^2x.cos^2x=0\)
\(\Leftrightarrow sin2x=0\)
\(\Rightarrow2x=k\pi\Rightarrow x=\frac{k\pi}{2}\)
Ta có: \(\sin^2\alpha+\cos^2\alpha=1\)
\(\Leftrightarrow\sin^2=1-\dfrac{16}{49}=\dfrac{33}{49}\)
Ta có: \(4\cdot\cos^2\alpha-3\cdot\sin^2\alpha\)
\(=4\cdot\dfrac{16}{49}-3\cdot\dfrac{33}{49}\)
\(=\dfrac{64-99}{49}=-\dfrac{5}{7}\)
`cos^2α=16/49`
`sin^2α+cos^2α=1`
`<=>sin^2α+(4/7)^2=1`
`<=>sin^2α=33/49`
`4cos^2α-3sin^2α=4. 16/49 - 3. 33/49 = -5/7`
\(A=sin^210^o+cos^220^o+sin^280^o+cos^270^o\)
\(A=\left(sin^210^o+sin^280^o\right)+\left(cos^220^o+cos^270^o\right)\)
\(A=0+0\)
\(A=0\)