Cho tam giác MNP vuông tại P đường cao PH. Trên tia đối của HP lấy Q sao cho HQ>HP. Gọi K là hình chiếu của N trên MQ. phân giác của MNP cắt PH tại E và PM tại F. cminh PE/PH=FM/MP Cảm ơn ạa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMND vuông tại D và ΔMPE vuông tại E có
MN=MP
góc M chung
=>ΔMND=ΔMPE
b: góc MND+góc HNP=góc MNP
góc MPE+góc HPN=góc MPN
mà góc MND=góc MPE và góc MNP=góc MPN
nên góc HNP=góc HPN
=>ΔHPN cân tại H
c: HN=HP
HP>HD
=>HN>HD
Cm: a) Ta có: góc NPM + góc NPK = 1800 (kề bù)
góc NMP + góc NMI = 1800 (kề bù)
Và góc NPM = góc NMP (vì t/giác MNP cân tại N)
=> góc NPK = góc NMI
Xét t/giác MNI và t/giác NPK
có NP = NM (gt)
góc NPK = góc NMI (cmt)
PK = MI (gt)
=> t/giác MNI = t/giác NPK (c.g.c)
b) Xét t/giác NHM và t/giác NHP
có NP = NM (gt)
góc NHP = góc NHM = 900 (gt)
NH : chung
=> t/giác NHM = t/giác NHP (ch - cgv)
=> HM = HP (hai cạnh tương ứng)
c) Ta có: T/giác MNI = t/giác NPK (cm câu a)
=> NK = NI (hai cạnh tương ứng)
=> t/giác NIK là t/giác cân tại N
a, vì tam giác MNP cân tại N =>M1=P1
mà M1+M2=P1+P2
=>M2=P2
xét tam giác MNI và tam giác NPK ta có:
MN=NP( tam giác MNP cân tại N)
M2=P2( cmt)
IM=PK(gt)
=> tam giác MNI = tam giác NPK( c-g-c)
b, xét tam giác vuông NHM và tam giác vuông NHP ta có:
NM=NP( tam giác MNP cân tại N)
M1=P1(tam giác MNP cân tại N)
=> tam giác NHM =tam giác NHP( ch-gn)
=>HM=HP (2 cạnh tương ứng)
c, Ta có ; tam giác NMI = tam giác NPK => góc NIM =góc NKP=> tam giác NIK cân tại N ( vì có 2 góc ở đáy = nhau)
- bạn tự vẽ hình nhé mình chỉ giúp đc như vậy thôi -
ΔMNP vuông tại P có PH là đường cao
nên NH*NM=NP^2
=>NH/NP=NP/NM
Xét ΔNPM có NF là phân giác
nên NP/NM=FP/FM
Xét ΔNHP có NE là phân giác
nên NH/NP=EH/EP
=>FP/FM=EH/FP
=>\(\dfrac{PE}{PH}=\dfrac{FM}{MP}\)