K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔMNP vuông tại P có PH là đường cao

nên NH*NM=NP^2

=>NH/NP=NP/NM

Xét ΔNPM có NF là phân giác

nên NP/NM=FP/FM

Xét ΔNHP có NE là phân giác

nên NH/NP=EH/EP

=>FP/FM=EH/FP

=>\(\dfrac{PE}{PH}=\dfrac{FM}{MP}\)

a: Xét ΔMND vuông tại D và ΔMPE vuông tại E có

MN=MP

góc M chung

=>ΔMND=ΔMPE

b: góc MND+góc HNP=góc MNP

góc MPE+góc HPN=góc MPN

mà góc MND=góc MPE và góc MNP=góc MPN

nên góc HNP=góc HPN

=>ΔHPN cân tại H

c: HN=HP

HP>HD

=>HN>HD

 

12 tháng 3 2019

N P M I K H

Cm: a) Ta có: góc NPM + góc NPK = 1800 (kề bù)

                     góc NMP + góc NMI = 1800 (kề bù)

Và góc NPM = góc NMP (vì t/giác MNP cân tại N)

=> góc NPK = góc NMI

Xét t/giác MNI và t/giác NPK

có NP = NM (gt)

  góc NPK = góc NMI (cmt)

  PK = MI (gt)

=> t/giác MNI = t/giác NPK (c.g.c)

b) Xét t/giác NHM và t/giác NHP

có NP = NM (gt)

 góc NHP = góc NHM = 900 (gt)

 NH : chung

=> t/giác NHM  = t/giác NHP (ch - cgv)

=> HM = HP (hai cạnh tương ứng)

c) Ta có: T/giác MNI = t/giác NPK (cm câu a)

=> NK = NI (hai cạnh tương ứng)

=> t/giác NIK là t/giác cân tại N

10 tháng 2 2019

a, vì tam giác MNP cân tại N =>M1=P1
                                   mà M1+M2=P1+P2
                                    =>M2=P2
 xét tam giác MNI và tam giác NPK ta có:
    MN=NP( tam giác MNP cân tại N)
    M2=P2( cmt)
    IM=PK(gt)
=> tam giác MNI = tam giác NPK( c-g-c)
b, xét tam giác vuông NHM và tam giác vuông NHP ta có:
NM=NP( tam giác MNP cân tại N)
M1=P1(tam giác MNP cân tại N)
=> tam giác NHM =tam giác NHP( ch-gn)
=>HM=HP (2 cạnh tương ứng)
c, Ta có ; tam giác NMI = tam giác NPK => góc NIM =góc NKP=> tam giác NIK cân tại N ( vì có 2 góc ở đáy = nhau)
                             - bạn tự vẽ hình nhé mình chỉ giúp đc như vậy thôi -