bài 4 giá trị tuyệt đối của một số hữu tỉ
cộng trừ nhân chia số thập phân
4.1
a] [x]= 12
b] [x] = 2,15
c] [x] = -12/7
d] [x] = 3/18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|-5 3/7|.|x|-3/4=2|x|+-8,7
Đề bài thế có phải ko bạn?
Bài 1:
a. $2x-10-[3x-14-(4-5x)-2x]=2$
$2x-10-3x+14+(4-5x)+2x=2$
$-x-10+14+4-5x+2x=2$
$-4x+8=2$
$-4x=-6$
$x=\frac{-6}{-4}=\frac{3}{2}$
b. Đề sai. Bạn xem lại.
c.
$|x-3|=|2x+1|$
$\Rightarrow x-3=2x+1$ hoặc $x-3=-(2x+1)$
$\Rightarrow x=-4$ hoặc $x=\frac{2}{3}$
Bài 2:
a. Gọi 3 số nguyên liên tiếp là $a, a+1, a+2$
Ta có:
$a+a+1+a+2=3a+3=3(a+1)\vdots 3$ (đpcm)
b. Gọi 5 số nguyên liên tiếp là $a, a+1, a+2, a+3, a+4$
Ta có:
$a+(a+1)+(a+2)+(a+3)+(a+4)=5a+10=5(a+2)\vdots 5$ (đpcm)
c.
Tổng quát: Tổng của $n$ số nguyên liên tiếp chia hết cho $n$. với $n$ lẻ.
Thật vậy, gọi $n$ số nguyên liên tiếp là $a, a+1, a+2, ...., a+n-1$
Tổng của $n$ số nguyên liên tiếp là:
$a+(a+1)+(a+2)+....+(a+n-1)$
$=na+(1+2+3+....+n-1)$
$=na+\frac{n(n-1)}{2}$
$=n[a+\frac{n-1}{2}]$
Vì $n$ lẻ nên $\frac{n-1}{2}$ nguyên
$\Rightarrow a+\frac{n-1}{2}$ nguyên
$\Rightarrow a+(a+1)+....+(a+n-1)=n[a+\frac{n-1}{2}]\vdots n$
\(x+\left(-32\right)=-84-\left(-46\right)\)
\(x-32=-84+46\)
\(x-32=-38\)
\(x=-38+32\)
\(x=-6\)
\(453+x=-443-\left(-199\right)\)
\(453+x=-443+199\)
\(453+x=-244\)
\(x=-244-453\)
\(x=-697\)
\(\left|-x+7\right|=24\)
\(\Rightarrow\hept{\begin{cases}-x+7=24\\-x+7=-24\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=7-24\\x=7+24\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-17\\x=31\end{cases}}\)
| x | - | 2 | = 5
=> | x | - 2 = 5
=> | x \ = 7
=> \(\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
3 | x | = 18
=> | x | = 6
=> \(\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
2 | x | - 5 = 7
=> | x | = 7 + 5
=> | x | = 12
=> \(\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
| x | : 3 - 1 = | - 4 |
=> | x | : 3 - 1 = 4
=> | x | : 3 = 5
=> | x | = 15
=> \(\orbr{\begin{cases}x=15\\x=-15\end{cases}}\)