K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

\(-4x^2+2xy-y^2=-3x^2-x^2+2xy-y^2=-3x^2-\left(x^2-2xy+y^2\right)\)

\(=-3x^2-\left(x-y\right)^2\le0\)(đpcm)

Dấu "=" xảy ra <=> x = y = 0

30 tháng 6 2017

Cảm ơn nha

27 tháng 6 2016

câu 1 :a2+ab+ b2/4 +3b2/4=(a+b/2)+3b2/2 tong 2 binh phương luôn >=0 dau bang khi ca hai số đó bằng 0. a=0 và b=0

câu 2: a2-ab+ b2/4 +3b2/4=(a-b/2)+3b2/2 .a=0 và b=0

NV
5 tháng 5 2021

Cách đơn giản nhất là sử dụng phép biến đổi tương đương:

BĐT đã cho tương đương:

\(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng.

Dấu "=" xảy ra khi x=y

1 tháng 4 2017

c) Áp dụng BĐT cô si cho 2 hai số dương \(a;b\) ta có:

\(a+b\ge2\sqrt{ab}\)

\(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{\sqrt{ab}}\)

\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Dấu "=" xảy ra khi \(\Leftrightarrow a=b\)

NV
18 tháng 6 2019

a/

\(\Leftrightarrow x^2-2xy+y^2+2x^2+10x+26=0\)

\(\Leftrightarrow\left(x-y\right)^2+2\left(x-\frac{5}{2}\right)^2+\frac{27}{2}=0\)

\(VT>0\Rightarrow\) ko tồn tại x; y thỏa mãn

b/

\(\Leftrightarrow4x^2-4x+1+3\left(y^2+10y+25\right)+2=0\)

\(\Leftrightarrow\left(2x-1\right)^2+3\left(y+5\right)^2+2=0\)

\(\Rightarrow\) Không tồn tại x; y thỏa mãn

c/

\(3\left(x^2-4x+4\right)+6\left(y^2-\frac{10}{3}y+\frac{25}{9}\right)+\frac{34}{3}=0\)

\(\Leftrightarrow3\left(x-2\right)+6\left(y-\frac{5}{3}\right)^2+\frac{34}{3}=0\)

Không tồn tại x; y thỏa mãn