K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

\(-4x^2+2xy-y^2=-3x^2-x^2+2xy-y^2=-3x^2-\left(x^2-2xy+y^2\right)\)

\(=-3x^2-\left(x-y\right)^2\le0\)(đpcm)

Dấu "=" xảy ra <=> x = y = 0

30 tháng 6 2017

Cảm ơn nha

AH
Akai Haruma
Giáo viên
15 tháng 1 2023

Lời giải:
$P=(x+1)^3-(x+1)^3-[(x-1)^2+(x+1)^2]$

$=-[(x-1)^2+(x+1)^2]=-[(x^2-2x+1)+(x^2+2x+1)]=-2(x^2+1)$ phụ thuộc vào giá trị của biến nhé. Bạn xem lại đề.

$Q=(2x)^3-y^3+(2x)^3+y^3-16x^3$

$=8x^3-y^3+8x^3+y^3-16x^3=(8x^3+8x^3-16x^3)+(-y^3+y^3)=0+0=0$ không phụ thuộc vào giá trị của biến (đpcm)

15 tháng 1 2023

câu P= (x+1)3-(x-1)3-3[(x-1)2+(x+1)2

làm lại hộ mình với ạ 

18 tháng 5 2017

(2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)

= (2x + y)[(2x)2 – 2x.y + y2] – (2x – y)[(2x)2 + 2x.y + y2]

= [(2x)3 + y3] – [(2x)3 – y3]

= (2x)3 + y3 – (2x)3 + y3

= 2y3

29 tháng 3 2018

a) (x + 3)(x2 – 3x + 9) – (54 + x3)

= ( x + 3)(x2 – 3.x + 32) – (54 + x3)

= x3 + 33 – (54 + x3)

= x3 + 27 – 54 – x3

= -27

b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)

= (2x + y)[(2x)2 – 2x.y + y2] – (2x – y)[(2x)2 + 2x.y + y2]

= [(2x)3 + y3] – [(2x)3 – y3]

= (2x)3 + y3 – (2x)3 + y3

= 2y3

29 tháng 3 2018

a) (x + 3)(x2 – 3x + 9) – (54 + x3)

= ( x + 3)(x2 – 3.x + 32) – (54 + x3)

= x3 + 33 – (54 + x3) = x3 + 27 – 54 – x3

= -27

b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2) 

= (2x + y)[(2x)2 – 2x.y + y2] – (2x – y)[(2x)2 + 2x.y + y2]

= [(2x)3 + y3] – [(2x)3 – y3]

= (2x)3 + y3 – (2x)3 + y3

= 2y3 

15 tháng 2 2017

(2x – y).(4x2 + 2xy + y2)

= (2x – y).[(2x)2 + 2x.y + y2]

= (2x)3 – y3 (Áp dụng HĐT (7))

= 8x3 – y3

`# \text {04th5}`

`a.`

`P = (5x^2 - 2xy + y^2) - (x^2 + y^2) - (4x^2 - 5xy + 1)`

`= 5x^2 - 2xy + y^2 - x^2 - y^2 - 4x^2 + 5xy - 1`

`= (5x^2 - x^2 - 4x^2) + (-2xy + 5xy) + (y^2 - y^2) - 1`

`= 3xy - 1`

`b.`

\((x^2-5x+4)(2x+3)-(2x^2-x-10)(x-3)\)

`= x^2(2x + 3) - 5x(2x + 3) + 4(2x + 3) - [ 2x^2(x - 3) - x(x - 3) - 10(x - 3)]`

`= 2x^3 + 3x^2 - 10x^2 - 15x + 8x + 12 - (2x^3 - 6x^2 - x^2 + 3x - 19x + 30)`

`= 2x^3 -7x^2 - 7x + 12 - (2x^3 - 7x^2 - 7x + 30)`

`= 2x^3 - 7x^2 - 7x + 12 - 2x^3 + 7x^2 + 7x -30`

`= -30`

Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến.

1: Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54\right)\)

\(=x^3+27-x^3-54\)

=-27

2: Ta có: \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=8x^3+y^3-8x^3+y^3\)

\(=2y^3\)

18 tháng 9 2021

\(1,=x^3+270-x^3-54=-27\\ 2,=8x^3+y^3-8x^3+y^3=2y^3\\ 3,=x^3-3x^2+3x-1-x^3-8+3x^2-48=3x-57\\ 4,=x^3-x-x^3-1=-x-1\\ 5,=8x^3-5\left(8x^3+1\right)=-32x^3-5\\ 6,=27+x^3-27=x^3\\ 7,làm.ở.câu.3\\ 8,=x^3-6x^2+12x-8+6x^2-12x+6-x^3-1+3x\\ =3x-3\)

9 tháng 8 2017

NV
18 tháng 6 2019

a/

\(\Leftrightarrow x^2-2xy+y^2+2x^2+10x+26=0\)

\(\Leftrightarrow\left(x-y\right)^2+2\left(x-\frac{5}{2}\right)^2+\frac{27}{2}=0\)

\(VT>0\Rightarrow\) ko tồn tại x; y thỏa mãn

b/

\(\Leftrightarrow4x^2-4x+1+3\left(y^2+10y+25\right)+2=0\)

\(\Leftrightarrow\left(2x-1\right)^2+3\left(y+5\right)^2+2=0\)

\(\Rightarrow\) Không tồn tại x; y thỏa mãn

c/

\(3\left(x^2-4x+4\right)+6\left(y^2-\frac{10}{3}y+\frac{25}{9}\right)+\frac{34}{3}=0\)

\(\Leftrightarrow3\left(x-2\right)+6\left(y-\frac{5}{3}\right)^2+\frac{34}{3}=0\)

Không tồn tại x; y thỏa mãn

14 tháng 12 2021

\(c,=8x^3-y^3\\ d,=2x^2y^2-3xy^3+5y^4\)