K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

\(x^2+7x=810\)

\(\Leftrightarrow\left(x^2+2\cdot\frac{7}{2}\cdot x+\frac{49}{4}\right)=810+\frac{49}{4}\)

\(\Leftrightarrow\left(x+\frac{7}{2}\right)^2=\frac{3289}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{7}{2}=\frac{\sqrt{3289}}{2}\\x+\frac{7}{2}=\frac{-\sqrt{3289}}{2}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{3289}-7}{2}\\x=\frac{-\sqrt{3289}-7}{2}\end{cases}}\)

13 tháng 3 2016

\(1.\)  Hổ báo !?

\(M=x^2+5y^2-2xy+6x-18y+50\)

       \(=x^2-2xy+y^2+6x-6y+9+4y^2-12y+9+32\)

       \(=\left(x-y\right)^2+6\left(x-y\right)+9+\left(2x-3\right)^2+32\)

\(M=\left(x-y+3\right)^2+\left(2x-3\right)^2+32\)

Mà  \(\left(x-y+3\right)^2\ge0\)  và  \(\left(2x-3\right)^2\ge0\)  với mọi  \(x,y\) nên  \(M\ge32>0\)  

Vậy,  biểu thức  \(M\)  luôn dương với mọi  giá trị của  \(x,y\)

Bài 2 không hổ báo lắm nên tự xử nha

13 tháng 3 2016

2/   (x2 - 4).3 - (7x - 10).3 = (x2 - 7x + 6).3

 => (x2 - 4).3 - (7x - 10).3 - (x2 - 7x + 6).3 = 0

 => 3.(x2 - 4 - 7x + 10 - x2 + 7x - 6) = 0

 => 0x = 0

=> có vô số x thỏa phương trình trên

1/ đề bị sao ấy, giải không ra

14 tháng 5 2022

`x^2+\sqrt{x^2+20}=22`

`<=>x^2+20+\sqrt{x^2+20}-42=0`

Đặt `\sqrt{x^2+20}=t` `(t > 0)` khi đó ta có ptr:

      `t^2+t-42=0`

`<=>t^2+7t-6t-42=0`

`<=>t(t+7)-6(t+7)=0`

`<=>(t+7)(t-6)=0`

`<=>` $\left[\begin{matrix} t=-7\text{ (ko t/m)}\\ t=6\text{ (t/m)}\end{matrix}\right.$

    `@ t=6=>\sqrt{x^2+20}=6`

            `<=>x^2+20=36`

            `<=>x^2=16`

            `<=>x=+-4`

Vậy `S={+-4}`

11 tháng 10 2023

Để giải phương trình \(x^2 + \sqrt{x^2 + 20} = 22\), bạn có thể làm theo các bước sau:

1. Trừ 22 từ cả hai bên của phương trình để đưa các thuật ngữ chứa x về cùng một bên:

   \(x^2 + \sqrt{x^2 + 20} - 22 = 0\)

2. Bây giờ, chúng ta có một phương trình bậc hai dạng căn bậc hai. Để giải phương trình này, ta sẽ giải quyết từng phần:

   \(x^2 + \sqrt{x^2 + 20} = 22\)

3. Bây giờ, ta sẽ loại bỏ căn bậc hai bằng cách đưa nó về phía bên kia của phương trình:

   \(x^2 = 22 - \sqrt{x^2 + 20}\)

4. Bình phương cả hai phía của phương trình:

   \(x^4 = (22 - \sqrt{x^2 + 20})^2\)

5. Giải phương trình bậc bốn này:

   \(x^4 = (22 - \sqrt{x^2 + 20})^2\)

   \(x^4 = 484 - 44\sqrt{x^2 + 20} + (x^2 + 20)\)

6. Đưa các thuật ngữ chứa \(x^2\) về cùng một bên:

   \(x^4 - x^2 - 464 = - 44\sqrt{x^2 + 20}\)

7. Bình phương cả hai phía của phương trình:

   \((x^4 - x^2 - 464)^2 = (- 44\sqrt{x^2 + 20})^2\)

   \(x^8 - 2x^6 - 23x^4 + 912x^2 + 464^2 = 1936x^2 + 20\)

8. Rút gọn và sắp xếp phương trình:

   \(x^8 - 2x^6 - 23x^4 + 1916x^2 + 464^2 - 20 = 0\)

9. Đây là một phương trình bậc tám, và giải nó có thể phức tạp. Bạn có thể sử dụng phần mềm máy tính hoặc các công cụ trực tuyến để tìm các nghiệm của phương trình này. Giải nghiệm này là một phương trình bậc cao và cần một giải thuật đặc biệt.

26 tháng 1 2018

ta có:\(x^3+x^2+2x^2+2x+2x+2=0\)0

\(\Leftrightarrow x^2\left(x+1\right)+2x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x^2+2x+2\right)\left(x+1\right)=0\)

Do \(x^2+2x+2\ne0\)

\(\Rightarrow x+1=0\)

\(\Rightarrow x=-1\)

vậy phương trình trên có tập nghiệm là :S=(-1) 

7 tháng 12 2021

\(9,PT\Leftrightarrow x-6=3x-7\left(x\ge6\right)\\ \Leftrightarrow x=\dfrac{1}{2}\left(ktm\right)\\ \Leftrightarrow x\in\varnothing\\ 10,PT\Leftrightarrow3x-2=4x^2-4x+1\left(x\le\dfrac{1}{2}\right)\\ \Leftrightarrow4x^2-7x+3=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{4}\end{matrix}\right.\left(ktm\right)\Leftrightarrow x\in\varnothing\\ 11,PT\Leftrightarrow\sqrt{x^2+x-1}=2-x\left(x\le2\right)\\ \Leftrightarrow x^2+x-1=x^2-4x+4\\ \Leftrightarrow5x=5\Leftrightarrow x=1\left(tm\right)\\ 12,PT\Leftrightarrow\left(\sqrt{20-x}-4\right)+\left(\sqrt{x+5}-3\right)=0\left(5\le x\le20\right)\\ \Leftrightarrow\dfrac{4-x}{\sqrt{20-x}+4}+\dfrac{x-4}{\sqrt{x+5}+3}=0\\ \Leftrightarrow\left(x-4\right)\left(\dfrac{1}{\sqrt{x+5}+3}-\dfrac{1}{\sqrt{20-x}+4}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\\dfrac{1}{\sqrt{x+5}+3}=\dfrac{1}{\sqrt{20-x}+4}\left(1\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow\sqrt{x+5}+3=\sqrt{20-x}+4\\ \Leftrightarrow\left(\sqrt{x+5}-4\right)-\left(\sqrt{20-x}-3\right)=0\\ \Leftrightarrow\dfrac{x-11}{\sqrt{x+5}+4}+\dfrac{x-11}{\sqrt{20-x}+3}=0\\ \Leftrightarrow\left(x-11\right)\left(\dfrac{1}{\sqrt{x+5}+4}+\dfrac{1}{\sqrt{20-x}+3}\right)=0\\ \Leftrightarrow x=11\left(\dfrac{1}{\sqrt{x+5}+4}+\dfrac{1}{\sqrt{20-x}+3}>0\right)\\ \text{Vậy PT có nghiệm }x\in\left\{4;11\right\}\)

7 tháng 12 2021

\(13,PT\Leftrightarrow\sqrt{x-1}+\sqrt{3x-2}=\sqrt{5x+1}\left(x\ge-\dfrac{1}{5}\right)\\ \Leftrightarrow4x-3+2\sqrt{\left(x-1\right)\left(3x-2\right)}=5x+1\\ \Leftrightarrow x+4=2\sqrt{3x^2-5x+2}\\ \Leftrightarrow x^2+8x+16=12x^2-20x+8\\ \Leftrightarrow11x^2-28x-8=0\\ \Delta'=14^2+8\cdot11=284\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{14-2\sqrt{71}}{11}\\x=\dfrac{14+2\sqrt{71}}{11}\end{matrix}\right.\)

\(14,ĐK:x\ge-1\)

Đặt \(\sqrt{x+1}=a\ge0\)

\(PT\Leftrightarrow2\sqrt{a^2-1+2a}-a=4\\ \Leftrightarrow2\sqrt{a^2+2a-1}=a+4\\ \Leftrightarrow4a^2+8a-4=a^2+8a+16\\ \Leftrightarrow3a^2-20=0\\ \Leftrightarrow a^2=\dfrac{20}{3}\Leftrightarrow x+1=\dfrac{20}{3}\Leftrightarrow x=\dfrac{17}{3}\left(tm\right)\)

\(15,ĐK:-3\le x\le6\)

Đặt \(\sqrt{x+3}+\sqrt{6-x}=a\ge0\)

\(\Leftrightarrow\dfrac{a^2-9}{2}=\sqrt{\left(x+3\right)\left(6-x\right)}\\ PT\Leftrightarrow a-\dfrac{a^2-9}{2}=3\\ \Leftrightarrow2a-a^2+9=6\\ \Leftrightarrow a^2-2a-3=0\\ \Leftrightarrow a=3\left(a\ge0\right)\\ \Leftrightarrow\sqrt{x+3}+\sqrt{6-x}=3\\ \Leftrightarrow\sqrt{x+3}-3+\sqrt{6-x}=0\\ \Leftrightarrow\dfrac{x-6}{\sqrt{x+3}+3}-\dfrac{x-6}{\sqrt{6-x}}=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\left(tm\right)\\\dfrac{1}{\sqrt{x+3}+3}=\dfrac{1}{\sqrt{6-x}}\left(1\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow\sqrt{x+3}+3=\sqrt{6-x}\\ \Leftrightarrow\sqrt{x+3}-\left(\sqrt{6-x}-3\right)=0\\ \Leftrightarrow\dfrac{x+3}{\sqrt{x+3}}+\dfrac{x+3}{\sqrt{6-x}+3}=0\\ \Leftrightarrow x=-3\left(\dfrac{1}{\sqrt{x+3}}+\dfrac{1}{\sqrt{6-x}+3}>0\right)\\ \text{Vậy PT có nghiệm }x\in\left\{6;-3\right\}\) 

DD
1 tháng 8 2021

\(sin^2x+\sqrt{3}sinxcosx=1\)

\(\Leftrightarrow sin^2x+\sqrt{3}sinxcosx=sin^2x+cos^2x\)

\(\Leftrightarrow cosx\left(\sqrt{3}sinx-cosx\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}cosx=0\\\sqrt{3}sinx=cosx\end{cases}}\Leftrightarrow\orbr{\begin{cases}cosx=0\\tanx=\frac{1}{\sqrt{3}}\end{cases}}\)

Từ đây suy ra nghiệm. 

18 tháng 9 2021

\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)

\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x^2-2x}{x\left(x-2\right)}\)

\(\Leftrightarrow x^2+2x-2=x^2-2x\)

\(\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\)

18 tháng 9 2021

Cho mình sửa lại nhé:

\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)

\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}\)

\(\Leftrightarrow x^2+2x-2=x-2\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

25 tháng 5 2022

ráng nhìn ha

undefined

undefined

25 tháng 5 2022

ui chữ cj đẹp ghê

NV
7 tháng 1 2022

22.

ĐKXĐ: \(y\ne1\)

\(\left\{{}\begin{matrix}x^2-\dfrac{1}{y-1}=2\\2x^2+\dfrac{3}{1-y}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2+\dfrac{2}{1-y}=4\\2x^2+\dfrac{3}{1-y}=2\end{matrix}\right.\)

Trừ pt dưới cho trên:

\(\Rightarrow\dfrac{1}{1-y}=-2\)

\(\Rightarrow1-y=-\dfrac{1}{2}\Rightarrow y=\dfrac{3}{2}\)

Thế vào \(x^2-\dfrac{1}{y-1}=2\)

\(\Rightarrow x^2=4\Rightarrow x=\pm2\)

Vậy nghiệm của hệ là \(\left(x;y\right)=\left(2;\dfrac{3}{2}\right);\left(-2;\dfrac{3}{2}\right)\)

NV
7 tháng 1 2022

b.

ĐKXĐ: \(x\ne-\dfrac{1}{2}\)

\(Hệ\Leftrightarrow\left\{{}\begin{matrix}2y^2-\dfrac{10}{2x+1}=8\\2y^2-\dfrac{11}{2x+1}=7\end{matrix}\right.\)

Trừ pt trên cho dưới:

\(\Rightarrow\dfrac{1}{2x+1}=1\)

\(\Rightarrow2x+1=1\)

\(\Rightarrow x=0\)

Thế vào \(y^2-\dfrac{5}{2x+1}=4\)

\(\Rightarrow y^2=9\Rightarrow y=\pm3\)

Vậy nghiệm của hệ là \(\left(x;y\right)=\left(0;3\right);\left(0;-3\right)\)