K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4:

c; =>|x-1|+|x+2|=3

TH1: x<-2

Pt sẽ là -x-2+1-x=3

=>-2x-1=3

=>-2x=4

=>x=-2(loại)

TH2: -2<=x<1

Pt sẽ là x+2+1-x=3

=>3=3(luôn đúng)

TH3: x>=1

Pt sẽ là x-1+x+2=3

=>2x-1=3

=>2x=4

=>x=2(nhận)

3:

c: Xét ΔABC có

AH,BE là trung tuyến

AH cắt BE tại G

=>G là trọng tâm của ΔABC

 

16 tháng 8 2022

3. She said I should ask a lawyer.

4. Mrs Linh asked me to give Tuan this book.

30 tháng 10 2021

b) Bạn đã chứng minh được tứ giác EKFC là hình bình hành ở câu a, mà EF cắt CK tại I \(\Rightarrow\)I là trung điểm EF (tính chất hình bình hành)

\(\Rightarrow AI\)là trung tuyến của \(\Delta AEF\)

Mà \(\Delta AEF\)vuông tại A \(\Rightarrow AI=\frac{1}{2}EF\)(tính chất tam giác vuông)

Lại có \(EI=\frac{1}{2}EF\)do I là trung điểm của đoạn EF \(\Rightarrow AI=EI\left(=\frac{1}{2}EF\right)\)

Mặt khác \(BE\perp AF\)\(MI\perp AF\left(gt\right)\)\(\Rightarrow BE//MI\)(quan hệ từ vuông góc đến song song)

Mà tứ giác BEFD là hình bình hành \(\Rightarrow BD//EF\)(tính chất hình bình hành)

\(\Rightarrow BM//EI\)(vì \(M\in BD;I\in EF\))

Xét tứ giác BEIM có \(BE//MI\left(cmt\right);BM//EI\left(cmt\right)\)\(\Rightarrow\)Tứ giác BEIM là hình bình hành (định nghĩa)

\(\Rightarrow BM=EI\)(tính chất hình bình hành)

Mà \(AI=EI\left(cmt\right)\)\(\Rightarrow AI=BM\left(=EI\right)\left(đpcm\right)\)

c) Do tứ giác BEFD là hình bình hành \(\Rightarrow\hept{\begin{cases}BE//DF\\BE=DF\end{cases}}\)(tính chất hình bình hành)

Mà \(\hept{\begin{cases}BE\perp CF\\BE=CF\end{cases}}\left(gt\right)\Rightarrow\hept{\begin{cases}DF\perp CFtạiF\\DF=CF\end{cases}}\)\(\Rightarrow\)F nằm trên đường trung trực của đoạn CD và \(\Delta CDF\)vuông cân tại F

\(\Rightarrow\widehat{DCF}=45^0\)

\(\Delta ABC\)vuông cân tại A (gt) \(\Rightarrow\widehat{ACB}=45^0\)

 \(\Rightarrow\widehat{BCD}=180^0-\widehat{ACB}-\widehat{DCF}=180^0-45^0-45^0=90^0\)

\(\Rightarrow\Delta BCD\)vuông tại C.

Xét hình thang BEFD (BE//DF) ta có I là trung điểm EF (cmt) và IM//BE (cmt) \(\Rightarrow\)M là trung điểm của đoạn BD

\(\Rightarrow\)CM là trung tuyến của \(\Delta BCD\)

Mặt khác \(\Delta BCD\)vuông tại C \(\Rightarrow CM=\frac{1}{2}BD\)(tính chát tam giác vuông)

Mà \(DM=\frac{1}{2}BD\)do M là trung điểm BD \(\Rightarrow DM=CM\left(=\frac{1}{2}BD\right)\)

\(\Rightarrow\)M nằm trên đường trung trực của đoạn CD.

Mà F cũng nằm trên đường trung trực của đoạn CD (cmt)

\(\Rightarrow\)MF là đường trung trực của đoạn CD \(\Rightarrow\)C đối xứng với D qua MF (đpcm)

c: Ta có: \(\sqrt{x+4\sqrt{x-4}}=5\)

\(\Leftrightarrow\sqrt{x-4}+2=5\)

\(\Leftrightarrow\sqrt{x-4}=3\)

\(\Leftrightarrow x-4=9\)

hay x=13

26 tháng 9 2021

c: Ta có: √x+4√x−4=5x+4x−4=5

⇔√x−4+2=5⇔x−4+2=5

⇔√x−4=3⇔x−4=3

⇔x−4=9⇔x−4=9

hay x=13

 

7 tháng 5 2023

Đây cậu nhé!

Câu 11:D

Câu 12:B

 

 

7 tháng 5 2023

\(c)4\dfrac{1}{5}:x=1\dfrac{2}{5}\\ \dfrac{21}{5}:x=\dfrac{7}{5}\\ x=\dfrac{21}{5}:\dfrac{7}{5}\\ x=\dfrac{21}{5}\times\dfrac{5}{7}\\ x=\dfrac{105}{35}\\ x=3\)

a: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM⊥AB

Bài 12: 

a: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

6 tháng 12 2021

Có thể lm bài 11 đc ko ạ🥺😅