K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x=24 nên x+1=25

C=x^4-x^3(x+1)+x^2(x+1)-x(x+1)+30

=x^4-x^4-x^3+x^3+x^2-x^2-x+30

=-x+30

=30-24

=6

24 tháng 8 2023

\(M=x^{10}-25x^9+25x^8-25x^7+...-25x^3+25x^2-25x+25\)

Ta thấy : \(x=24\Rightarrow x+1=25\)

\(\Rightarrow M=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\)

\(M=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...-x^4-x^3+x^3+x^2-x^2-x+x+1\)

\(\Rightarrow M=1\)

Vậy \(M=1\left(tạix=24\right)\)

18 tháng 10 2024

M=x 

10

 −25x 

9

 +25x 

8

 −25x 

7

 +...−25x 

3

 +25x 

2

 −25x+25

 

Ta thấy : 

x

=

24

x

+

1

=

25

x=24⇒x+1=25

 

M

=

x

10

(

x

+

1

)

x

9

+

(

x

+

1

)

x

8

(

x

+

1

)

x

7

+

.

.

.

(

x

+

1

)

x

3

+

(

x

+

1

)

x

2

(

x

+

1

)

x

+

(

x

+

1

)

⇒M=x 

10

 −(x+1)x 

9

 +(x+1)x 

8

 −(x+1)x 

7

 +...−(x+1)x 

3

 +(x+1)x 

2

 −(x+1)x+(x+1)

 

M

=

x

10

x

10

x

9

+

x

9

+

x

8

x

8

x

7

+

.

.

.

x

4

x

3

+

x

3

+

x

2

x

2

x

+

x

+

1

M=x 

10

 −x 

10

 −x 

9

 +x 

9

 +x 

8

 −x 

8

 −x 

7

 +...−x 

4

 −x 

3

 +x 

3

 +x 

2

 −x 

2

 −x+x+1

 

M

=

1

⇒M=1

 

Vậy 

M

=

1

(

t

i

x

=

24

)

M=1(tạix=24)

3 tháng 10 2021

1) \(4-25x^2=0\)

\(\Rightarrow\left(2-5x\right)\left(2+5x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}5x=2\\5x=-2\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{5}\\x=-\dfrac{2}{5}\end{matrix}\right.\)

2) Tính thì phải cho giá trị của x.

\(A=x^3-3x^2+3x-1\)

\(=\left(x-1\right)^3\)

\(=\left[{}\begin{matrix}\left(\dfrac{5}{2}-1\right)^3=\dfrac{27}{8}\\\left(-\dfrac{5}{2}-1\right)^3=-\dfrac{343}{8}\end{matrix}\right.\)

25 tháng 8 2018

a) Với x = 24

=> x + 1 = 24 (1)

Thay (1) vào A ta được:

\(A=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)

\(A=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...+x^3+x^2-x^2-x+x+1\)

\(A=1\)

b) Với x = 31

=> x - 1 = 30 (1)

Thay (1) vào B ta được

\(B=x^3-\left(x-1\right)x^2-\left(x-1\right)x+1\)

\(B=x^3-x^3+x^2-x^2+x+1\)

\(B=x+1\)

\(B=31+1=32\)

c) Với x = 14

=> x + 1 = 15

x + 2 = 16

2x + 1 = 29

x - 1 = 13

Thay tất cả biểu thức trên vào C ta được

\(C=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)

\(C=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)

\(C=-x\)

\(C=-14\)

d) Ta có:

\(\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)=1\)

\(\Rightarrow\left(-2+x^2\right)^5=1\)

\(\Rightarrow-2+x^2=1\)

\(\Rightarrow x^2=1+2=3\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{3}\\=-\sqrt{3}\end{matrix}\right.\)

22 tháng 7 2015

x=-24

=>-x=24

=>-x+1=25

thay -x+1=25 vào E ta được:

E=x20+(-x+1)x19+(-x+1)x18+(-x+1)x17+...+(-x+1)x3+(-x+1)x2+(-x+1)x+(-x+1)

=x20-x20+x19-x19+x18-x18+x17-...-x4+x3-x3+x2-x2+x-x+1

=1

Vậy với x=-24 thì E=1

11 tháng 9 2016

x = ‐24

=> ‐ X = 24

=> ‐ X + 1 = 25

thay ‐x+1=25 vào E ta được:

E = x 20 + ﴾‐ x + 1﴿ x 19 + ﴾‐ x + 1﴿ x 18 + ﴾‐ x + 1﴿ x 17 + ... + ﴾‐ x + 1﴿ x 3 + ﴾‐ x + 1 ﴿ x 2 + ﴾‐ x + 1﴿ x + ﴾‐ x + 1﴿

= x 20 ‐x 20 + x 19 ‐x 19 + x 1 8 ‐x 18 + x 17 ‐...‐ x 4 + x 3 ‐x 3 + x 2 ‐x 2 + x‐x + 1

= 1

Vậy với x=‐24 thì E=1

Học tốt nha Nguyễn Quang Linh

AH
Akai Haruma
Giáo viên
6 tháng 11 2023

Lời giải:

$M=(x^{10}-24x^9)-(x^9-24x^8)+(x^8-24x^7)-(x^7-24x^6)+(x^6-24x^5)-(x^5-24x^4)+(x^4-24x^3)-(x^3-24x^2)+(x^2-24x)-(x-24)+1$

$=x^9(x-24)-x^8(x-24)+x^7(x-24)-.....+x(x-24)-(x-24)+1$

$=(x-24)(x^9-x^8+x^7-...+x-1)+1$

$=0.(x^9-x^8+....+x-1)+1=1$

26 tháng 4 2019

Chọn B.

Ta có: