Cho ∆ABC nhọn (AB<AC), nội tiếp (O) có H là trực tâm. Vẽ đường kính AK của (O).
a) ∆ABK và ∆ACK là ∆ gì? Vì sao?
b) Tứ giác BHCK là hình gì? Vì sao?
c) Vẽ OM vuông góc với BC tại M. C/m 3 điểm H, M, K thẳng hàng.
d) C/m OM = \(\dfrac{1}{2}\) AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E đề nek
đề đây nha mn :(( cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E
Cho tam giác ABC nhọn AB<AC M là trung điểm của BC trên tia đời của tia MA có điểm E s cho AM=ME
a) cmr tam giác AMB=CMR
b từ A kẻ D s cho HA =HD cmr CE = BP
c cmr CE = CD tam giác AMD là tam giác j vì s
D CMR AM NHỎ HƠN AB +AC /2
CHỈ LM MỖI Ý D THUI NHA NHANH NHA
a: Xét ΔAMB và ΔEMC có
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔAMB=ΔEMC
b: Xet ΔBAD có
BH vừa là đường cao, vừa là trung tuyến
=>ΔBAD cân tại B
=>BD=BA=CE
c: Xet ΔMAD có
MH vừa là đường cao,vừa là trung tuyến
=>ΔMAD cân tại M
d: AM<1/2(AB+AC)
=>AE<AB+AC
=>AE<BE+AB(luôn đúng)
a: Xét (O) có
ΔABK nội tiếp
AK là đường kính
=>ΔABK vuông tại B
Xét (O) có
ΔACK nội tiếp
AK là đường kính
=>ΔACK vuông tại C
b: CK vuông góc AC
BH vuông góc AC
=>BH//CK
BK vuông góc BA
CH vuông góc BA
=>BK//CH
Xét tứ giác BHCK có
BH//CK
BK//CH
=>BHCK là hình bình hành
c: ΔOBC cân tại O có OM là đường cao
nên M là trung điểm của BC
BHCK là hbh
=>BC cắt HK tại trung điểm của mỗi đường
=>M là trung điểm của HK
=>H,M,K thẳng hàng