Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\widehat{ABK}=\widehat{ACK}=90^0\) (góc nt chắn nửa đường tròn) nên \(\Delta ABK;\Delta ACK\) vuông tại B và C
\(b,\left\{{}\begin{matrix}CK//BH\left(\perp AC\right)\\BK//CH\left(\perp AB\right)\end{matrix}\right.\Rightarrow BHCK\) là hbh
\(c,\left\{{}\begin{matrix}AO=OM=R\\OM//AH\left(\perp BC\right)\end{matrix}\right.\Rightarrow HM=MK\)
Hình bình hành BHCK có M là trung điểm HK nên cũng là trung điểm BC
\(d,\left\{{}\begin{matrix}AO=OK=R\\HM=MK\left(cm.trên\right)\end{matrix}\right.\Rightarrow OM\) là đtb tam giác AHK
\(\Rightarrow OM=\dfrac{1}{2}AH\)
a: Xét (O) có
ΔABK nội tiếp
AK là đường kính
Do đó: ΔABK vuông tại B
=>BK vuông góc với AB
=>BK//CH
Xét (O) có
ΔACK nội tiếp
AK là đường kính
Do đó: ΔACK vuông tại C
=>AC vuông góc với CK
=>CK//BH
Xét tứ giác BHCK có
BH//CK
BK//CH
Do đó: BHCK là hình bình hành
b: Vì BHCK là hình bình hành
nên BC cắt HK tại trung điểm của mỗi đường
=>M là trung điểm của HK
Xét ΔKAH có
KO/KA=KM/KH
nên OM//AH và OM/AH=KO/KA=1/2
=>OM=1/2AH
\(\widehat{ABK}=90^o\)(Góc nội tiếp chắn nửa đường tròn) \(\Rightarrow BK\perp AB\) mặt khác \(CH\perp AB\)(Do H là trực tâm) \(\Rightarrow BK//CH\)
C/m tương tự cũng có \(CK//BH\)
=> Tứ giác BHCK là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một)
Câu 2:
Gọi giao của BC với KH là M' => M là trung điểm của BC (M' là giao của hai đường chéo hbh BHCK)
Mặt khác M cũng là trung điểm của BC (Trong 1 đường tròn bán kính vuông gó với dây cung thì chia đôi dây cung)
=> \(M\equiv M'\) => H; M;K thẳng hàng
A C B H D M O K
a/ Ta có
\(\widehat{ACK}=90^o\) (góc nội tiếp chắn nửa đường tròn)\(\Rightarrow CK\perp AC\)
\(BH\perp AC\) (BH là đường cao)
=> BH//CK (vì cùng vuông góc với AC) (1)
Ta có
\(\widehat{ABK}=90^o\) (góc nội tiếp chắn nửa đường tròn)\(\Rightarrow BK\perp AB\)
\(CH\perp AB\) (CH là đường cao)
=> CH//BK (cùng vuông góc với AB (2)
Từ (1) và (2) => BHCK là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một thì tứ giác đó là hbh)
b/ Nối BO cắt đường tròn tại D ta có
\(\widehat{BCD}=90^o\) (góc nội tiếp chắn nửa đường tròn)\(\Rightarrow CD\perp BC\)
\(AH\perp BC\) (AH là đường cao)
=> AH//CD (cùng vuông góc với BC) (3)
Ta có
\(\widehat{BAD}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AD\perp AB\)
\(CH\perp AB\) (CH là đường cao)
=> AD//CH (cùng vuông góc với AB) (4)
Từ (3) và (4) => AHCD là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một thì tứ giác đó là hbh)
=> AH=CD (trong hbh các cặp cạnh đối bằng nhau từng đôi một)
Xét \(\Delta BCD\) có
\(BM=CM;BO=DO\) => OM là đường trung bình của \(\Delta BCD\Rightarrow OM=\frac{1}{2}CD\)
Mà \(CD=AH\Rightarrow OM=\frac{1}{2}AH\left(dpcm\right)\)
b) Ta có: CH\(\perp\)AB(gt)
BK\(\perp\)AB(ΔABK vuông tại B)
Do đó: CH//BK(Định lí 1 từ vuông góc tới song song)
Ta có: BH\(\perp\)AC(gt)
CK\(\perp\)AC(ΔACK vuông tại C)
Do đó: BH//CK(Định lí 1 từ vuông góc tới song song)
Xét tứ giác BHCK có
CH//BK(cmt)
BH//CK(cmt)
Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
a) Xét (O) có
ΔABK nội tiếp đường tròn(A,B,K∈(O))
AK là đường kính(gt)
Do đó: ΔABK vuông tại B(Định lí)
Xét (O) có
ΔACK nội tiếp đường tròn(A,C,K∈(O))
AK là đường kính(gt)
Do đó: ΔACK vuông tại C(Định lí)
Bài 1:
a: Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}=90^0\)
Do đó: BFEC là tứ giác nội tiếp
c: Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
Xét tứ giác BICD có
BI//CD(cùng vuông góc với AC)
CI//BD(cùng vuông góc với AB)
Do đó: BICD là hình bình hành
Bài 2:
a: Xét (O) có
MN=EF
OH là khoảng cách từ O đến dây MN
OK là khoảng cách từ O đến dây EF
Do đó: OH=OK
Xét ΔAHO vuông tại H và ΔAKO vuông tại K có
AO chung
OH=OK
Do đó: ΔAHO=ΔAKO
Suy ra: AH=AK
b: Xét ΔOHM vuông tại H và ΔOKE vuông tại K có
OM=OE
OH=OK
Do đó: ΔOHM=ΔOKE
Suy ra: HM=KE
Ta có: AM+MH=AH
AE+EK=AK
mà AH=AK
và HM=KE
nên AM=AE
a: Xét (O) có
ΔABK nội tiếp
AK là đường kính
=>ΔABK vuông tại B
Xét (O) có
ΔACK nội tiếp
AK là đường kính
=>ΔACK vuông tại C
b: CK vuông góc AC
BH vuông góc AC
=>BH//CK
BK vuông góc BA
CH vuông góc BA
=>BK//CH
Xét tứ giác BHCK có
BH//CK
BK//CH
=>BHCK là hình bình hành
c: ΔOBC cân tại O có OM là đường cao
nên M là trung điểm của BC
BHCK là hbh
=>BC cắt HK tại trung điểm của mỗi đường
=>M là trung điểm của HK
=>H,M,K thẳng hàng