Phân tích đa thức thành nhân tử:
a) (a+b+c)^2 + (a+b-c)^2 - 4c^2
b) 4a^2b^2 - (a^2+b^2-c^2)^2
c) a(b^3-c^3) + b(c^3-a^3) + c(a^3-b^3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a (a+b+c)2 +(a+b-c)2 - 4c2= (a+b+c)2+(a+b-c+2c).(a+b-c-2c) =(a+b+c)2 +(a+b+c).(a+b-3c)=(a+b+c). (a+b+c+a+b-3c)=(a+b+c).2.(a+b-c)
câu b 4a2b2-(a2+b2-c2) = (2ab-a2-b2+c2).(2ab+a2+b2-c2)
= (c2-(a-b)2).((a+b)2-c2)
= (c-a+b).(c+a-b).(a+b-c).(a+b+c)
câu c a4+b4+c4-2a2b2+2b2c2-2a2c2-4b2c2=(a2-b2-c2)2-4b2c2=(a2-b2-c2-2bc).(a2-b2-c2+2bc)=(a2-(b+c)2).(a2-(b-c)2)=(a-b-c).(a+b+c).(a-b+c).(a+b-c)
câu d dùng pp xét giá trị riêng thay b =c (bạn tự giải ) thì đa thức này nếu coi là đa thức biến b thì đa thức A chia hết cho b-c
a,b,c bình đẳng => A chia hết cho c-a , a-b
=>A= k(a-b)(b-c)(c-a)
thay thử một bộ a,b,c bất kì => k=? (mình đang vội )
thay k tính đc vàoA= k(a-b)(b-c)(c-a)
a) \(5a^2-5ax-7a+7x\)
\(=5a\left(a-x\right)-7\left(a-x\right)\)
\(=\left(5a-7\right)\left(a-x\right)\)
c) \(x^2-\left(a+b\right).x+ab\)
\(=x^2-ax-bx+ab\)
\(=x\left(x-a\right)-b\left(x-a\right)\)
\(=\left(x-b\right)\left(x-a\right)\)
Xửa đề:
a/ \(a\left(a+2b\right)^3-b\left(b+2a\right)^3=\left(a-b\right)^3\left(a+b\right)\)
b/ \(\left(b-a^2\right)\left(c-b^2\right)\left(c^2-a\right)\)
a) \(6x^2-11xy+3y^2=6x^2-2xy-9xy+3y^2=2x.\left(3x-y\right)-3y.\left(3x-y\right)\)
= \(\left(3x-y\right).\left(2x-3y\right)\)
b) PP: dùng hệ số bất định
ta có: x^4 -3x^3+6x^2-5x+3=(x^2+ax-1)(x^2 +bx-3) (*)
=x^4 +bx^3-3x^2+ax^3 +(a+b)x^2 -3ax -x^2-bx+3
=x^4 +(b+a)x^3 +(a+b-3-1)x^2 -(3a+b)x +3
=> a+b=-3
a+b-4=6
3a+b=5
<=> a=7/2 ;b=13/2 thay vào (*) ta đc: x^4 -3x^3+6x^2-5x+3=(x^2+\(\frac{7}{2}\).x -1)(x^2 +\(\frac{13}{2}\).x -3)
Hay x^4 -3x^3+6x^2-5x+3= \(\frac{1}{4}.\left(2x^2+7x-2\right)\left(2x^2+13-6\right)\)
a) \(A=a^3-b^3-c^3-3abc\)
\(=\left(a-b\right)^3+3ab\left(a-b\right)-c^3-3abc\)
\(=\left(a-b-c\right)\left[\left(a-b\right)^2+c\left(a-b\right)+c^2\right]+3ab\left(a-b-c\right)\)
\(=\left(a-b-c\right)\left(a^2-2ab+b^2+ac-bc+c^2+3ab\right)\)
\(=\left(a-b-c\right)\left(a^2+b^2+c^2+ab+ac-bc\right)\)
b) \(B=a^2b^2\left(a-b\right)-c^2b^2\left(c-b\right)+a^2c^2\left(c-a\right)\)
\(=a^2b^2\left(a-b\right)+c^2b^2\left(b-c\right)+a^2c^2\left(c-a\right)\)
\(=a^2b^2\left(a-b\right)+c^2b^2\left(b-c\right)-a^2c^2\left[\left(a-b\right)+\left(b-c\right)\right]\)
\(=a^2b^2\left(a-b\right)+c^2b^2\left(b-c\right)-a^2c^2\left(a-b\right)-a^2c^2\left(b-c\right)\)
\(=a^2\left(a-b\right)\left(b^2-c^2\right)+c^2\left(b-c\right)\left(b^2-a^2\right)\)
\(=a^2\left(a-b\right)\left(b-c\right)\left(b+c\right)+c^2\left(b-c\right)\left(b-a\right)\left(b+a\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a^2b+a^2c-bc^2-ac^2\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(ab+bc+ca\right)\)
ai có thể giảng cho mình dạng toán tìm số tự nhiên thỏa mãn đièu kiện chia hết ko
hãy nêu ra cách giải cụ thể cho câu sau 3a-11 chia hết cho a+2 tìm a
\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)
\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)
\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
a, 4a^2b^3 - 6a^3b^2 = 2a^2b^2(2b - 3a)
b, 5(a + b) +x( a + b ) = ( 5 + x )( a + b )
c, (a - b)^2 - ( b - a ) = ( a - b )^2 + ( a - b ) = (a - b) ( a - b + 1)
a: Ta có: \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\)
\(=\left[\left(a-b\right)^2-9\right]\cdot\left[\left(a+b\right)^2-1\right]\)
\(=\left(a-b-3\right)\left(a-b+3\right)\left(a+b-1\right)\left(a+b+1\right)\)
a) (a+b+c)^2 + (a+b-c)^2 - 4c^2
\(=\left(a+b+c\right)^2+\left[\left(a+b-c\right)^2-\left(2c\right)^2\right]\)
\(=\left(a+b+c\right)^2+\left(a+b-c+2c\right)\left(a+b-c-2c\right)\)
\(=\left(a+b+c\right)^2+\left(a+b+c\right)\left(a+b-3c\right)\)
\(=\left(a+b+c\right)\left(a+b+c+a+b-3c\right)\)
\(=\left(a+b+c\right)\left(2a+2b-2c\right)\)
\(=2\left(a+b+c\right)\left(a+b-c\right)\)
b) 4a^2b^2 - (a^2+b^2-c^2)^2
\(=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)
\(=\left[\left(a^2+2ab+b^2\right)-c^2\right]\left[c^2-\left(a^2-2ab+b^2\right)\right]\)
\(=\left[\left(a+b\right)^2-c^2\right]\left[c^2-\left(a-b\right)^2\right]\)
\(=\left(a+b+c\right)\left(a+b-c\right)\left(c+a-b\right)\left(c-a+b\right)\)
c) a(b^3-c^3) + b(c^3-a^3) + c(a^3-b^3)
\(=ab^3-ac^3+bc^3-a^3b+a^3c-b^3c\)
\(=a^3\left(c-b\right)+bc\left(c-b\right)\left(c+b\right)-a\left(c-b\right)\left(c^2+bc+b^2\right)\)
\(=a^3\left(c-b\right)+\left(c-b\right)\left(bc^2+b^2c\right)-\left(c-b\right)\left(ac^2+abc+ab^2\right)\)
\(=\left(c-b\right)\left(a^3+bc^2+b^2c-ac^2-abc-ab^2\right)\)
a) (a+b+c)^2 + (a+b-c)^2 - 4c^2
\(=\left(a+b+c\right)^2+\left[\left(a+b-c\right)^2-\left(2c\right)^2\right]\)
\(=\left(a+b+c\right)^2+\left(a+b-c+2c\right)\left(a+b-c-2c\right)\)
\(=\left(a+b+c\right)^2+\left(a+b+c\right)\left(a+b-3c\right)\)
\(=\left(a+b+c\right)\left(a+b+c+a+b-3c\right)\)
\(=\left(a+b+c\right)\left(2a+2b-2c\right)\)
\(=2\left(a+b+c\right)\left(a+b-c\right)\)
b) 4a^2b^2 - (a^2+b^2-c^2)^2
\(=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)
\(=\left[\left(a^2+2ab+b^2\right)-c^2\right]\left[c^2-\left(a^2-2ab+b^2\right)\right]\)
\(=\left[\left(a+b\right)^2-c^2\right]\left[c^2-\left(a-b\right)^2\right]\)
\(=\left(a+b+c\right)\left(a+b-c\right)\left(c+a-b\right)\left(c-a+b\right)\)
c) a(b^3-c^3) + b(c^3-a^3) + c(a^3-b^3)
\(=ab^3-ac^3+bc^3-a^3b+a^3c-b^3c\)
\(=a^3\left(c-b\right)+bc\left(c-b\right)\left(c+b\right)-a\left(c-b\right)\left(c^2+bc+b^2\right)\)
\(=a^3\left(c-b\right)+\left(c-b\right)\left(bc^2+b^2c\right)-\left(c-b\right)\left(ac^2+abc+ab^2\right)\)
\(=\left(c-b\right)\left(a^3+bc^2+b^2c-ac^2-abc-ab^2\right)\)