Cho tam giác ABC vuông tại A. DBC vuông tại D (A và D nằm trên hai nửa mặt phẳng bờ BC). Vẽ BH vuông góc AD tại Hà. CK vuông góc AD tại K, AE vuông góc CD tại E, M là giáo điểm AE và CK.
a. Chủ mình rằng AB // DM
b. Chứng minh rằng AH = DK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vẽ AE _|_ CD tại E, gọi M là giao điểm của AE và CK
\(\Delta\)ADC có CK,AE ;à hai đường cao cắt nhau tại M
=> M là trực tâm tam giác ADC
=> DM_|_AC, AB _|_AC => AB//DM(đpcm)
\(\Delta\)ADB=\(\Delta\)DAM (g.c.g) => AB=DM
\(\Delta\)HAB=\(\Delta\)KDM (cạnh huyền-góc nhọn) => AH=DK (đpcm)
Em tham khảo ở link: Câu hỏi của Thư Anh Nguyễn - Toán lớp 8 - Học toán với OnlineMath
a) Xét tam giác ADC và tam giác ABE
có AD=AB (GT)
góc DAC=góc EAB = ( 90 độ + góc BAC)
AE=AC ( GT)
tam giác ADC =tam giác ABE (C..G.C) (1)
suy ra DC = BE
góc ADC= góc ABC (2 góc tương ứng) (2)
DC cắt BE tại O
Xét tam giác ADF vuông tại A suy ra góc ADF + góc DFA = 90độ (3)
MÀ góc AFD = góc BFC ( đối đỉnh) (4)
Từ (2), (3), (4) suy ra góc BFC + góc ABE = 90 độ suy ra tam giác BFO vuông tại O suy ra DC vuông góc với BE tại O
b) Xét tam giác vuông IDA và tam giác vuông HAB
có AB=AD (GT)
góc IAD=góc ABH ( cùng phụ với góc HAB)
suy ra tam giác IDA = tam giác HAB (cạnh huyền-góc nhọn)
c) Chứng minh tương tự tam giác AEK = tam giác CAH (cạnh huyền-góc nhon)
suy ra EK = AH
Vì EK vuông góc với d
DI vuông góc với d
suy ra EK // DI
Xét tam giác vuông DIM và tam giác vuông EKM
có EK =DI (=AH)
góc IDM = góc IEK ( so le trong do EK // DI)
tam giác DIM = tam giác EKM (G.C.G)
suy ra DM=ME ; MI = MK
suy ra điều phải chứng minh
Gọi Q là điểm đối xứng với A qua M, S là điểm đối xứng với E qua M
Lấy giao điểm của DB và EC kéo dài là F, gọi G là trung điểm của OF. Nối F với I.
Dễ dàng chứng minh được: \(\Delta\)AMC=\(\Delta\)BMQ (c.g.c) => ^MAC=^MQB
Suy ra AC // BQ (2 góc so le trong bằng nhau) => ^BAC+^ABQ=1800 (1)
Ta có: ^BAC+^EAD= 2.^BAC + ^CAE + ^DAB = (^BAC+^CAE) + (^BAC+^DAB) = ^BAE+^CAD=1800 (2)
Từ (1) và (2) => ^BAC+^ABQ=^BAC+^EAD => ^ABQ=^EAD
=> \(\Delta\)ABQ=\(\Delta\)EAD (c.g.c) = >^BAQ=^AED (2 góc tương ứng) hay ^BAM=^AEN
Xét \(\Delta\)ABM và \(\Delta\)EAN: ^BAM=^AEN; ^ABM=^EAN (Cùng phụ với ^BAH); AB=AE
=> \(\Delta\)ABM=\(\Delta\)EAN (g.c.g) => AM=EN (2 cạnh tương ứng)
Tương tự ta chứng minh AM=DN => DN=EN => N là trung điểm của DE
\(\Delta\)AEC=\(\Delta\)ABD (c.g.c) => EC=BD
\(\Delta\)EMC=\(\Delta\)SMB (c.g.c) => EC=SB
=> BD=SB => Tam giác DBS cân tại B. Do ^SBF là góc ngoài của \(\Delta\)SDB
=> ^SBF=2. ^BDS .
\(\Delta\)EMC=\(\Delta\)SMB => ^MEC=^MSB => EC//SB hay EF//SB => ^SBF=^EFD (So le trong)
=> ^EFD = 2.^BDS (3)
Dễ thấy Bx và Cy là phân giác 2 góc ngoài của tam giác FBC. Chúng cắt nhau tại I
Nên FI là phân giác của ^CFB hay ^EFD => ^DFI=1/2 ^EFD (4)
Từ (3) và (4) => ^BDS=^DFI => DS//FI (2 góc so le trong)
Mà MN là đường trung bình của tam giác EDS => MN//FI (*)
Xét \(\Delta\)OIF:
K là trung điểm OI, G là trung điểm OF => KG là đường trung bình \(\Delta\)OIF => KG//FI (**)
Xét tứ giác BOCF: M; G lần lượt là trung điểm của 2 đường chéo BC và OF
FB giao CO tại D; FC giao BO tại E; N là trung điểm của DE
Tứ đó ta có: 3 điểm G;M;N cùng nằm trên đường thẳng Gauss của tứ giác BOCF
=> G,M,N thẳng hàng (***)
Từ (*); (**) và (***) => 3 điểm M;N;K thẳng hàng (Theo tiên đề Ơ-clit) (đpcm).
ΔAMC=ΔBMQ (c.g.c) => ^MAC=^MQB
Suy ra AC // BQ (2 góc so le trong bằng nhau) => ^BAC+^ABQ=1800 (1)
Ta có: ^BAC+^EAD= 2.^BAC + ^CAE + ^DAB = (^BAC+^CAE) + (^BAC+^DAB) = ^BAE+^CAD=1800 (2)
Từ (1) và (2) => ^BAC+^ABQ=^BAC+^EAD => ^ABQ=^EAD
=> ΔABQ=ΔEAD (c.g.c) = >^BAQ=^AED (2 góc tương ứng) hay ^BAM=^AEN
Xét ΔABM và ΔEAN: ^BAM=^AEN; ^ABM=^EAN (Cùng phụ với ^BAH); AB=AE
=> ΔABM=ΔEAN (g.c.g) => AM=EN (2 cạnh tương ứng)
Tương tự ta chứng minh AM=DN => DN=EN => N là trung điểm của DE
ΔAEC=ΔABD (c.g.c) => EC=BD
ΔEMC=ΔSMB (c.g.c) => EC=SB
=> BD=SB => Tam giác DBS cân tại B. Do ^SBF là góc ngoài của ΔSDB
=> ^SBF=2. ^BDS .
ΔEMC=ΔSMB => ^MEC=^MSB => EC//SB hay EF//SB => ^SBF=^EFD (So le trong)
=> ^EFD = 2.^BDS (3)
Dễ thấy Bx và Cy là phân giác 2 góc ngoài của tam giác FBC. Chúng cắt nhau tại I
Nên FI là phân giác của ^CFB hay ^EFD => ^DFI=1/2 ^EFD (4)
Từ (3) và (4) => ^BDS=^DFI => DS//FI (2 góc so le trong)
Mà MN là đường trung bình của tam giác EDS => MN//FI (*)
Xét ΔOIF:
K là trung điểm OI, G là trung điểm OF => KG là đường trung bình ΔOIF => KG//FI (**)
Xét tứ giác BOCF: M; G lần lượt là trung điểm của 2 đường chéo BC và OF
FB giao CO tại D; FC giao BO tại E; N là trung điểm của DE
Tứ đó ta có: 3 điểm G;M;N cùng nằm trên đường thẳng Gauss của tứ giác BOCF
=> G,M,N thẳng hàng (***)
Từ (*); (**) và (***) => 3 điểm M;N;K thẳng hàng (Theo tiên đề Ơ-clit) (đpcm).