K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2021

⎧⎪ ⎪⎨⎪ ⎪⎩ˆDAB=ˆABC(hthang.cân)AD=BC(hthang.cân)AB.chung⇒ΔADB=ΔBCA(c.g.c)⇒ˆADB=ˆACB⇒ˆADC−ˆADB=ˆBCD−ˆACB⇒ˆOCD=ˆODC⇒ΔCOD.cân.tại.OMà.ˆCOD=ˆAOB=600⇒ΔCOD.đều{DAB^=ABC^(hthang.cân)AD=BC(hthang.cân)AB.chung⇒ΔADB=ΔBCA(c.g.c)⇒ADB^=ACB^⇒ADC^−ADB^=BCD^−ACB^⇒OCD^=ODC^⇒ΔCOD.cân.tại.OMà.COD^=AOB^=600⇒ΔCOD.đều

Mà DF là trung tuyến nên cũng là đường cao

Do đó DF⊥ACDF⊥AC

ΔDFAΔDFA có FM là trung tuyến ứng với cạnh huyền nên FM=12AD(1)FM=12AD(1)

Cmtt ⇒ΔOAB.đều⇒AE⊥BD⇒EM=12AD(2)⇒ΔOAB.đều⇒AE⊥BD⇒EM=12AD(2)

{OE=EBOF=FC⇒EF{OE=EBOF=FC⇒EF là đtb tam giác OBC ⇒EF=12BC=12AD(hthang.cân)(3)⇒EF=12BC=12AD(hthang.cân)(3)

(1)(2)(3)⇒FM=EM=EF⇒ΔMEF.đều

21 tháng 9 2021

\(\left\{{}\begin{matrix}\widehat{DAB}=\widehat{ABC}\left(hthang.cân\right)\\AD=BC\left(hthang.cân\right)\\AB.chung\end{matrix}\right.\Rightarrow\Delta ADB=\Delta BCA\left(c.g.c\right)\\ \Rightarrow\widehat{ADB}=\widehat{ACB}\Rightarrow\widehat{ADC}-\widehat{ADB}=\widehat{BCD}-\widehat{ACB}\\ \Rightarrow\widehat{OCD}=\widehat{ODC}\\ \Rightarrow\Delta COD.cân.tại.O\\ Mà.\widehat{COD}=\widehat{AOB}=60^0\Rightarrow\Delta COD.đều\)

Mà DF là trung tuyến nên cũng là đường cao

Do đó \(DF\perp AC\)

\(\Delta DFA\) có FM là trung tuyến ứng với cạnh huyền nên \(FM=\dfrac{1}{2}AD\left(1\right)\)

Cmtt \(\Rightarrow\Delta OAB.đều\Rightarrow AE\perp BD\Rightarrow EM=\dfrac{1}{2}AD\left(2\right)\)

\(\left\{{}\begin{matrix}OE=EB\\OF=FC\end{matrix}\right.\Rightarrow EF\) là đtb tam giác OBC \(\Rightarrow EF=\dfrac{1}{2}BC=\dfrac{1}{2}AD\left(hthang.cân\right)\left(3\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow FM=EM=EF\Rightarrow\Delta MEF.đều\)

21 tháng 9 2021

thank bạn

nhé

16 tháng 8 2020

Tham khảo cách chứng minh "Bổ đề hình thang":

http://vuontoanhoc.blogspot.com/2016/06/hinh-hoc-8-bo-e-hinh-thang.html

8 tháng 9 2016

Xét ΔABD và ΔBAC có:

   AB: cạnh chung

   AD=BC(gt)

  BD=AC(gt)

=>ΔABD=ΔBAC (c.c.c)

=>^ADB=^BCA      ;

     ^ABD=^BAC.

=>ΔOAB cân tại O

=>OA=OB

Có: ^D=^ADB+^BDC

      ^C=^BCA+^ACD

Mà: ^D=^C(gt) ; ^ADB=^BCA(cmt)

=>^BDC=ACD

=>ΔODC cân tại O

=>OD=OC

13 tháng 8 2020

Gấp lắm ah @Như Trương Thị

a: Xét ΔABC và ΔBAD có

AB chung

BC=AD

AC=BD

=>ΔABC=ΔBAD

=>góc OBA=góc OAB

=>OA=OB

OA+OC=AC

OB+OD=BD

mà OA=OB và AC=BD

nên OC=OD

b: Xét ΔEDC có AB//DC

nên EA/AD=EB/BC

mà AD=BC

nên EA=EB

EA+AD=ED

EB+BC=EC

mà EA=EB và AD=BC

nên ED=EC

EA=EB

OA=OB

=>EO là trung trực của AB

EC=ED

OC=OD

=>EO là trung trực của CD

23 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

17 tháng 9 2017

hình ra số ngu như chó

6 tháng 8 2023

 

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

a ) Xét ADC và BCD, ta có:

AD = BC (tính chất hình thang cân)

(ADC) = (BCD) (gt)

DC chung

Do đó: ADC = BCD (c.g.c) ⇒ ∠�1∠�1

Trong OCD ta có: ∠�1∠�1 ⇒ OCD cân tại O ⇒ OC = OD (1)

AC = BD (tính chất hình thang cân) ⇒ AO + OC = BO + OD (2)

Từ (1) và (2) suy ra: AO = BO.

b)

 

���^=���^(��)⇒���^=���^ 

⇒ ∆ OCD cân tại O

⇒ OC = OD

⇒ OA + AD = OB + BC

Mà AD = BC (tính chất hình thang cân)

⇒ OA = OB

Xét ∆ ADC và ∆ BCD :

AD = BC (chứng minh trên)

AC = BD (tính chất hình thang cân)

CD cạnh chung

Do đó: ∆ ADC = ∆ BCD (c.c.c)

⇒�^1=�^1

⇒ ∆ EDC cân tại E

⇒ EC = ED nên E thuộc đường trung trực của CD

OC = OD nên O thuộc đường trung trực của CD

E≢ O. Vậy OE là đường trung trực của CD.

BD = AC (chứng minh trên)

⇒ EB + ED = EA + EC mà ED = EC

⇒ EB = EA nên E thuộc đường trung trực AB

E≢ O. Vậy OE là đường trung trực của AB.

Xét ΔODC có AB//DC

nên OA/AD=OB/BC

mà AD=BC

nên OA=OB

OA+AD=OD

OB+BC=OC

mà OA=OB và AD=BC

nên OD=OC

Xét ΔADC và ΔBCD có

AD=BC

DC chung

AC=BD

=>ΔADC=ΔBCD

=>góc EDC=góc ECD

=>ED=EC

OD=OC

ED=EC

=>OE là trung trực của CD

=>O,E,trung điểm của CD thẳng hàng

Bài 1: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:                 a) OA=OB , OC=OD                 b) EO là đường trung trực của hai đáy hình thang ABCD.     Bài 2: Cho hình thang ABCD (AD//BC, AD>BC) có đường chéo AC vuông góc với cạnh bên CD, AC là tia phân giác góc BAD và góc D=60 độ                 a) Chứng minh ABCD là hình thang cân        ...
Đọc tiếp

Bài 1: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:

                a) OA=OB , OC=OD

                b) EO là đường trung trực của hai đáy hình thang ABCD. 

   Bài 2: Cho hình thang ABCD (AD//BC, AD>BC) có đường chéo AC vuông góc với cạnh bên CD, AC là tia phân giác góc BAD và góc D=60 độ

                a) Chứng minh ABCD là hình thang cân

                 b) Tính độ dài cạnh AD, biết chu vi hình thang bằng 20cm.

     Bài 3: Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD=AE

                  a) Tứ giác BDEC là hình gì ? Vì sao?

                  b) Các điểm D,E ở vị trí nào thì BD=DE=EC?

             Mình đang cần gấp. Giúp mình nhé cảm ơn các bạn

 

0