Chứng minh : a 2002 n x 2005n+1 chia hết cho 2 , 5 và 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 61000 có chữ số tận cùng là 6 nên 61000 - 1 có chữ số tận cùng là 5. Suy ra 61000 - 1 chia hết cho 5.
b) 2002n . 2005n + 1 = 2002n . 2005n . 2005 = (2002 . 2005)n . 2005
2002 . 2005 có chữ số tận cùng là 0 => (2002 . 2005)n có chữ số tận cùng là 0 => (2002 . 2005)n . 2005 có chữ số tận cùng là 0 => 2002n . 2005n + 1 có chữ số tận cùng là 0 => 2002n . 2005n + 1 chia hết cho 2; 5 và 10.
2/
A=1+2+2^2+...+2^10
2.A= 2+2^2+...+2^11
=>2A-A = 2^11-1=> A = 2^11 -1=B
Vậy A=B
1)52003+52002+52001=52001(52+5+1)=52001(25+5+1)=52001.31
Vì 31 chia hết cho 31nên
52001.31chia hết cho 31 hay 52003+52002+52001 chia hết cho 31
2) A = 1+2+22+......+29+210
=>2A=2+22+23+...+211
=>2A-A=2+22+23+...+211-(1+2+22+...+29+210)
=>A=211-1
Vậy A=B=211-1
10^k + 8^k + 6^8 là chẵn
9^k + 7^k + 5^k là lẻ
mà chẵn - lẻ là lẻ
=> hiệu trên là lẻ
tương tư thì câu 2 cũng giải như vậy
5^2003+5^2002+5^2001=5^2001(5^2+5+1)=5^2001(25+5+1)=5^2001.31
suy ra:chia hết cho 31
Bạn ơi tại sao bạn lại làm (52+5+1) vậy.Chỗ đó mik chưa hiểu cho lắm.
Bạn làm ơn có thể giải thích cho mik được không.