Tính nhanh
C=1/30+1/42+1/56+1/72
D=1/1*4 + 1/4*7 + 1/7*10 + 1/10*13 + 1/13*16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{3}{8}+\dfrac{7}{12}+\dfrac{10}{16}+\dfrac{10}{24}\)
\(=\dfrac{3}{8}+\dfrac{7}{12}+\dfrac{5}{8}+\dfrac{5}{12}\)
\(=\left(\dfrac{3}{8}+\dfrac{5}{8}\right)+\left(\dfrac{7}{12}+\dfrac{5}{12}\right)\)
\(=1+1\)
\(=2\)
b) \(\dfrac{4}{6}+\dfrac{7}{13}+\dfrac{17}{9}+\dfrac{19}{13}+\dfrac{1}{9}+\dfrac{14}{6}\)
\(=\dfrac{2}{3}+\dfrac{7}{13}+\dfrac{17}{9}+\dfrac{19}{13}+\dfrac{1}{9}+\dfrac{7}{3}\)
\(=\left(\dfrac{2}{3}+\dfrac{7}{3}\right)+\left(\dfrac{7}{13}+\dfrac{19}{13}\right)+\left(\dfrac{17}{9}+\dfrac{1}{9}\right)\)
\(=3+2+2\)
\(=7\)
c) \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
\(=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\)
\(=1-\dfrac{1}{7}\)
\(=\dfrac{6}{7}\)
a,A=4/2.4+4/4.6+4/6.8+......+4/2012.2014
\(\Rightarrow\frac{1}{2}A=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+...+\frac{2}{2012\cdot2014}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2012}-\frac{1}{2014}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{2014}\)
\(\Rightarrow A=1-\frac{1}{1007}\)
\(\Rightarrow A=\frac{1006}{1007}\)
a/ \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}=\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}=\)
= 1-1/8 = 7/8
b/ = (17/9+1/9)+(19/13+7/13)+(14/6+10/6) = 18/9 + 26/13 + 24/6 = 2+2+4 = 8
A = { 3k + 1 | k ∈ N ; k < 9 }
B = { k3 | k ∈ N* | k < 6 }
C = { k . ( k + 1 ) | k ∈ N | k < 10 }
A = {x,k \(\in\) \(ℕ\) ; x = 3k + 1 ; x < 26}
B = {x \(\in\) \(ℕ^∗\) ; x\(^2\) < 126}
C . mk ko bt
a) 10; 13; 18; 26; 36; 52...
c) 0; 1; 4; 9; 16; 25...
m) 1; 4; 9; 16; 25; 36; 49; 64...
p) 1; 3; 9; 27; 81; 243...
\(C=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
\(C=\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\)
\(C=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(C=\frac{1}{5}-\frac{1}{9}=\frac{4}{45}\)
\(D=\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{10\cdot13}+\frac{1}{13\cdot16}\)
\(D=\frac{1}{3}\cdot\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\)
\(D=\frac{1}{3}\cdot\left(\frac{1}{1}-\frac{1}{16}\right)\)
\(D=\frac{1}{3}\cdot\frac{15}{16}=\frac{5}{16}\)
\(C=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
\(C=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
\(C=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(C=\frac{1}{5}-\frac{1}{9}\)
\(C=\frac{4}{45}\)
\(D=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+\frac{1}{13.16}\)
\(D=\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{13}-\frac{1}{16}\right)\)
\(D=\frac{1}{3}\left(1-\frac{1}{16}\right)\)
\(D=\frac{1}{3}.\frac{15}{16}\)
\(D=\frac{5}{16}\)