Tìm giá trị lớn nhất của biểu thức A = ( a - √a) : 3a. Vs a>0, a khác 4;1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = -a2 + 3a + 4
A = -( a2 - 3a + 9/4 ) + 25/4
A = -( a - 3/2 )2 + 25/4
-( a - 3/2 )2 ≤ 0 ∀ x => -( a - 3/2 )2 + 25/4 ≤ 25/4
Đẳng thức xảy ra <=> a - 3/2 = 0 => a = 3/2
=> MaxA = 25/4 <=> a = 3/2
\(A=-a^2+3a+4\)
\(\Rightarrow A=-a^2+3a-\frac{9}{4}+\frac{25}{4}\)
\(\Rightarrow A=-\left(a-\frac{3}{2}\right)^2+\frac{25}{4}\)
Vì \(\left(a-\frac{3}{2}\right)^2\ge0\forall a\)\(\Rightarrow-\left(a-\frac{3}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(a-\frac{3}{2}\right)^2=0\Leftrightarrow a-\frac{3}{2}=0\Leftrightarrow a=\frac{3}{2}\)
Vậy maxA = 25/4 <=> a = 3/2
ta thấy rằng 5 phải chia hết cho a tức là
a(U)5=1,-1;5,-5
vậy a 1,-1,5,-5 thì x có giá trị nguyên
Cho biểu thức Q=a^2/a-2*(a^2+4/a-4)+2017, với a khác 0, a khác 2
Tìm giá trị nhỏ nhất của biểu thức Q
\(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)
\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)
\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(b-\frac{b}{2}\right)^2\ge0\)
Hay \(ab\le2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\b=\frac{b}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)
\(A=4-\sqrt{x}\le4\\ A_{max}=4\Leftrightarrow x=0\)
Chọn A
A - 2√a nhé, mk nhầm