Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)
\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)
\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(b-\frac{b}{2}\right)^2\ge0\)
Hay \(ab\le2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\b=\frac{b}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)
Bạn nên viết lại đề bằng công thức toán để mọi người iheeur đề của bạn hơn nhé.
Áp dụng AM-GM có:
\(2a^2+\dfrac{2}{a}+\dfrac{2}{a}\ge3\sqrt[3]{2a^2.\dfrac{2}{a}.\dfrac{2}{a}}=6\)
\(b^2+\dfrac{27}{b}+\dfrac{27}{b}\ge3\sqrt[3]{b^2.\dfrac{27}{b}.\dfrac{27}{b}}=27\)
Cộng vế với vế => \(S\ge33\)
Dấu = xảy ra <=> a=1; b=3
=>T= a+2b=7
cho a>0,b>0 và S=2a^2+b^2+4/a+54/b. Khi biểu thức S đạt giá trị nhỏ nhất thì T=a+2b có giá trị bằng?
\(Q=\dfrac{2002}{a}+\dfrac{2017}{b}+2996a-5501b=\left(\dfrac{2002}{a}+8008a\right)+\left(\dfrac{2017}{b}+2017b\right)-\left(5012a+7518b\right)\)
\(=\left(\dfrac{2002}{a}+8008a\right)+\left(\dfrac{2017}{b}+2017b\right)-2506\left(2a+3b\right)\)
Áp dụng bất đẳng thức Cosi cho 2 số dương:
\(\left\{{}\begin{matrix}\dfrac{2002}{a}+8008\ge2\sqrt{\dfrac{2002}{a}.8008}=8008\\\dfrac{2017}{b}+2017b\ge2\sqrt{\dfrac{2017}{b}.2017b}=4034\end{matrix}\right.\)
Ta có: \(2a+3b=4\Rightarrow-\left(2a+3b\right)=-4\Leftrightarrow-2506\left(2a+3b\right)=-10024\)
\(\Rightarrow Q\ge8008+4034-10024=2018\)
\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\)
Ta có
Q = 2002 1 a + 4 a + 2017 1 b + b − 5012 a − 7518 b = 2002 1 a + 4 a + 2017 1 b + b − 2506 2 a + 3 b
+ Vì a, b dương và 2 a + 3 b ≤ 4 ⇒ 0 < 2 a + 3 b ≤ 4 do đó
Q ≥ 2002.2. 1 a .4 a + 2017.2. 1 b . b − 2506.4 = 2018 với mọi a, b>0 và 2 a + 3 b ≤ 4 , dấu bằng xảy ra khi a = 1 2 và b= 1.
+ Vậy giá trị nhỏ nhất của Q bằng 2018 khi a = 1 2 và b= 1..
\(A=\dfrac{x-4+5}{\sqrt{x}-2}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+5}{\sqrt{x}-2}=\sqrt{x}+2+\dfrac{5}{\sqrt{x}-2}\)
\(=\sqrt{x}-2+\dfrac{5}{\sqrt{x}-2}+4\ge2\sqrt{\dfrac{5\left(\sqrt{x}-2\right)}{\sqrt{x}-2}}+4=4+2\sqrt{5}\)
\(A_{min}=4+2\sqrt{5}\) khi \(9+4\sqrt{5}\)
b.
Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{l}{z}\right)\Rightarrow xyz=1\)
\(B=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)
\(B_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\Rightarrow a=b=c=1\)