K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

\(x^5+y^5=\left(x+y\right)^5-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)

\(=\left(x+y\right)^5-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)

\(=\left(x+y\right)^5-5xy\left[\left(x^3+y^3\right)+2xy\left(x+y\right)\right]\)

\(=\left(x+y\right)^5-5xy\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]\)

\(=\left(x+y\right)^5-5xy\left(x+y\right)\left(x^2-xy+y^2+2xy\right)\)

\(=\left(x+y\right)^5-5xy\left(x+y\right)\left[\left(x+y\right)^2-2xy-xy+2xy\right]\)

\(=\left(x+y\right)^5-5xy\left(x+y\right)\left[\left(x+y\right)^2-xy\right]\)

\(=a^5-5.6.a\left(a^2-6\right)\)

\(=a^5-30a^3+180a\)

3 tháng 8 2023

\(\text{a) x^2 + y^2 = (x+y)^2 - 2xy = a^2 - 2b}\)

\(\text{b) x^3 + y^3 = (x+y)^3 - 3xy(x+y) = a^3 - 3ab}\)

\(\text{c) x^4 + y^4 = (x^2+y^2)^2 - 2x^2y^2 = (a^2-2b)^2 - 2b^2 = a^4 - 4a^2b + 2b^2}\)

\(\text{d) x^5 + y^5 = (x^3+y^3)(x^2+y^2) - x^2y^2(x+y) = a^5 - 5a^3b + 5ab^2}\)

 

23 tháng 11 2023

a) Để tính giá trị của biểu thức x^4 + y^4, ta có thể sử dụng công thức Newton về tổng lũy thừa của một đa thức. Theo công thức Newton, ta có: x^4 + y^4 = (x^2 + y^2)^2 - 2x^2y^2 Từ đó, ta có thể tính giá trị của biểu thức x^4 + y^4 theo a và b: x^4 + y^4 = (a^2 - 2b)^2 - 2(a - 2b)b b) Tương tự, để tính giá trị của biểu thức x^5 + y^5, ta có thể sử dụng công thức Newton về tổng lũy thừa của một đa thức. Theo công thức Newton, ta có: x^5 + y^5 = (x + y)(x^4 - x^3y + x^2y^2 - xy^3 + y^4) Từ đó, ta có thể tính giá trị của biểu thức x^5 + y^5 theo a và b: x^5 + y^5 = (a)(a^4 - a^3b + a^2b^2 - ab^3 + b^4)

23 tháng 11 2023

ccc

NV
11 tháng 9 2021

\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^3-x^3y^2\)

\(=\left(x^2+y^2\right)\left(x^3+y^3\right)-\left(xy\right)^2\left(x+y\right)\)

\(=10.26-\left(-3\right)^2.2=...\)

11 tháng 9 2021

(x+y)5=32

⇔ x5+5x4y+10x3y2+10x2y3+5xy4+y5 = 32

⇔ x5+y= 32-5xy(x3+y3)-10x2y2(x+y)

              = 32-5.(-3).26-10.(-3)2.2

              = 242 

17 tháng 2 2023

Ko thấy bạn ê

30 tháng 5 2017

Khi x = - 1; y = 1 thì xy = (-1).1= -1

Ta có: xy – x2y2 + x3y3 – x4y4 + x5y5 – x6.y6

= xy – (xy)2 + (xy)3 – (xy)4 + (xy)5 – (xy)6

= -1 – (-1)2 + (-1)3 – (-1)4 + (-1)5 - (-1)6

= -1 – 1 + (-1) – 1 + (-1) – 1

= - 6

Chọn đáp án D

3 tháng 8 2021

D đúng nha!

22 tháng 3 2020

P/s : Sửa đề : Cho x > y > 1 và x5 + y5 = x - y . Chứng minh rằng : x4 + y4 < 1

+)Ta có : x4 + y4 < x4 + x3y + x2y2 + xy3 + y4

Mà x > y > 1 \( \implies\) x - y > 0 

\( \implies\) ( x - y ) ( x4 + y) < ( x - y ) ( x4 + x3y + x2y2 + xy3 + y) ( * )

+)Ta có : ( x - y ) ( x4 + x3y + x2y2 + xy3 + y

            = x ( x4 + x3y + x2y2 + xy3 + y) - y ( x4 + x3y + x2y2 + xy3 + y

            = x5 + x4y + x3y2 + x2y+ xy4 - x4y -  x3y2 - x2y3 -  xy4 - y5

            = x5 - y5

\( \implies\) ( x - y ) ( x4 + x3y + x2y2 + xy3 + y) = x5 - y5 ( ** )

Từ ( * ) ; ( ** ) 

\( \implies\)  ( x - y ) ( x4 + y) <  x5 - y5

Mà   x5 - y5 < x5 + y5 

\( \implies\) ( x - y ) ( x4 + y) <  x5 - y5

\( \implies\) ( x - y ) ( x4 + y) < x - y 

\( \implies\)  x4 + y4 < 1 ( đpcm ) 

6: \(-x^2y\left(xy^2-\dfrac{1}{2}xy+\dfrac{3}{4}x^2y^2\right)\)

\(=-x^3y^3+\dfrac{1}{2}x^3y^2-\dfrac{3}{4}x^4y^3\)

7: \(\dfrac{2}{3}x^2y\cdot\left(3xy-x^2+y\right)\)

\(=2x^3y^2-\dfrac{2}{3}x^4y+\dfrac{2}{3}x^2y^2\)

8: \(-\dfrac{1}{2}xy\left(4x^3-5xy+2x\right)\)

\(=-2x^4y+\dfrac{5}{2}x^2y^2-x^2y\)

9: \(2x^2\left(x^2+3x+\dfrac{1}{2}\right)=2x^4+6x^3+x^2\)

10: \(-\dfrac{3}{2}x^4y^2\left(6x^4-\dfrac{10}{9}x^2y^3-y^5\right)\)

\(=-9x^8y^2+\dfrac{5}{3}x^6y^5+\dfrac{3}{2}x^4y^7\)

11: \(\dfrac{2}{3}x^3\left(x+x^2-\dfrac{3}{4}x^5\right)=\dfrac{2}{3}x^3+\dfrac{2}{3}x^5-\dfrac{1}{2}x^8\)

12: \(2xy^2\left(xy+3x^2y-\dfrac{2}{3}xy^3\right)=2x^2y^3+6x^3y^3-\dfrac{4}{3}x^2y^5\)

13: \(3x\left(2x^3-\dfrac{1}{3}x^2-4x\right)=6x^4-x^3-12x^2\)

AH
Akai Haruma
Giáo viên
14 tháng 6 2021

Lời giải:

$x^5+y^5+z^5=(x^2+y^2+z^2)(x^3+y^3+z^3)-[x^2(y^3+z^3)+y^2(x^3+z^3)+z^2(x^3+y^3)]$

Mà:

$x^3+y^3+z^3=(x+y)^3-3xy(x+y)+z^3$

$=(-z)^3-3xy(-z)+z^3=3xyz$

Và:

\(x^2(y^3+z^3)+y^2(x^3+z^3)+z^2(x^3+y^3)\)

\(=x^2y^2(x+y)+y^2z^2(y+z)+z^2x^2(z+x)=-x^2y^2z-y^2z^2x-x^2y^2z\)

\(=-xyz(xy+yz+xz)=-xyz[\frac{(x+y+z)^2-(x^2+y^2+z^2)}{2}]=\frac{xyz(x^2+y^2+z^2)}{2}\)

Do đó: \(x^5+y^5+z^5=3xyz(x^2+y^2+z^2)-\frac{xyz(x^2+y^2+z^2)}{2}=\frac{5xyz(x^2+y^2+z^2)}{2}\)

\(\Rightarrow 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)\)

Ta có đpcm.

 

 

1 tháng 2 2020

a) (x-y)(x4+x3y+x2y2+xy3+y4) = x(x4+x3y+x2y2+xy3+y4)-y(x4+x3y+x2y2+xy3+y4) =(x5+x4y+x3y2+x2y2+xy4)-(x4y+x3y2+x2y2+xy4+y5) = x5+x4y+x3y2+x2y2+xy4-x4y-x3y2-x2y2-xy4-y5 =x5-y5⇒Điều cần chứng minh

Các câu b d tương tự

2 tháng 2 2020

cảm ơn bạn nhiều

HQ
Hà Quang Minh
Giáo viên
5 tháng 8 2023

\(x\cdot y=3\Rightarrow x=\dfrac{3}{y}\\ \Rightarrow\dfrac{3}{y}+y=5\\ \Rightarrow y^2-5y+1=0\\ \Leftrightarrow\left[{}\begin{matrix}y=\dfrac{5+\sqrt{21}}{2}\Rightarrow x=\dfrac{15-3\sqrt{21}}{2}\\y=\dfrac{5-\sqrt{21}}{2}\Rightarrow x=\dfrac{15+3\sqrt{21}}{2}\end{matrix}\right.\)

\(B=\left(2x-3y\right)\left(3y-2x\right)=-\left(2x-3y\right)^2\\ \Rightarrow\left[{}\begin{matrix}B\simeq-172,176\\B\simeq-790,823\end{matrix}\right.\)

\(C=x^5+y^5\\ \Rightarrow\left[{}\begin{matrix}C\simeq2525,096\\C\simeq613574,904\end{matrix}\right.\)

Em xem lại đề xem, bài này số xấu