K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2023

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

Chứng minh: \(VP=\left(x+y\right)\left(x^2-xy+y^2\right)=x^3-x^2y+xy^2+x^2y-xy^2+y^3=x^3+y^3=VP\)

Áp dụng vào bài 

--------------------------------------------------

Ta có \(a+b+c=0\Leftrightarrow-c=a+b\)

\(\Rightarrow c^2=\left(a+b\right)\left(a+b\right)=a^2+2ab+b^2\)

Xét \(a^3+b^3+a^2c+b^2c-abc\)

\(=a^3+b^3+c\left(a^2+b^2+2ab\right)-3abc\)

\(=a^3+b^3+c.c^2-3abc\)

\(=a^3+b^3+c^3-3abc\)

\(=a^3+a^2b+2a^2b+2ab^2+ab^2+b^3-3a^2b-3ab^2+c^3-3abc\)

\(=a^2\left(a+b\right)+2ab\left(a+b\right)+b^2\left(a+b\right)+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b\right)\left(a^2+2ab+b^2\right)+c^3\) ( do a+b+c=0 )

\(=\left(a+b\right)\left[a\left(a+b\right)+b\left(a+b\right)\right]+c^3\)

\(=\left(a+b\right)\left(a+b\right)\left(a+b\right)+c^3=\left(a+b\right)^3+c^3\)

( Áp dụng \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\) )

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]=0\) ( do a+b+c=0 )

Vậy \(a^3+b^3+a^2c+b^2c-abc=0\)

6 tháng 9 2017

\(a^3+a^2c-abc+b^2c+b^3=0\)

\(=a^2.\left(a+b+c\right)-a^2b-abc+b^2c+b^3\)

\(=a^2.\left(a+b+c\right)+b^2.\left(a+b+c\right)-ab^2-abc-a^2b\)

\(=a^2.\left(a+b+c\right)+b^2.\left(a+b+c\right)-ab.\left(a+b+c\right)\)

\(=\left(a+b+c\right).\left(a^2-ab+b^2\right)\)

\(=0\) ( Đpcm )

6 tháng 4 2016

abc = 1 mới đúng nhớ, nếu đúng thế thì mình mới giải!

AH
Akai Haruma
Giáo viên
1 tháng 2 2017

Bài 1

Đặt \(A=a^3+b^3+c^3-3(a-1)(b-1)(c-1)\)

Biến đổi:

\(A=a^3+b^3+c^3-3[abc-(ab+bc+ac)+a+b+c-1]=a^3+b^3+c^3-3abc+3(ab+bc+ac)-6\)

\(A=(a+b+c)^3-3[(a+b)(b+c)(c+a)+abc]-6+3(ab+bc+ac)\)

\(A=21-3(a+b+c)(ab+bc+ac)+3(ab+bc+ac)=21-6(ab+bc+ac)\)

Áp dụng BĐT Am-Gm:

\(3(ab+bc+ac)\leq (a+b+c)^2=9\Rightarrow ab+bc+ac\leq 3\)

\(\Rightarrow A\geq 21-6.3=3\). Dấu bằng xảy ra khi $a=b=c=1$

\(0\leq a,b,c\leq2\Rightarrow (a-2)(b-2)(c-2)\leq 0\)

\(\Leftrightarrow abc-2(ab+bc+ac)+4\leq 0\Leftrightarrow 2(ab+bc+ac)\geq 4+abc\geq 0\Rightarrow ab+bc+ac\geq 2\)

\(\Rightarrow A\leq 21-6.2=9\). Dấu bằng xảy ra khi $(a,b,c)=(0,1,2)$ và các hoán vị.

AH
Akai Haruma
Giáo viên
1 tháng 2 2017

Bài 2a)

Ta có

\(A=a^2+b^2+c^2=(a+1)^2+(b+1)^2+(c+1)^2-3-2(a+b+c)\)

\(\Leftrightarrow A=(a+b+c+3)^2-2[(a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)]-3\)

\(\Leftrightarrow A=6-2[(a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)]\)

\(-1\leq a,b,c\leq 2\Rightarrow a+1,b+1,c+1\geq 0\)

\(\Rightarrow (a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)\geq 0\Rightarrow A\leq 6\)

Dấu bằng xảy ra khi \((a,b,c)=(-1,-1,2)\) và các hoán vị của nó

22 tháng 8 2019

xin chao

4 tháng 12 2017

Vì a+b+c=0\(\Rightarrow c=-\left(a+b\right)\)

Ta có:\(a^3+b^3+c\left(a^2+b^2\right)=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2+b^2\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)-\left(a+b\right)\left(a^2+b^2\right)=\left(a+b\right).\left(-ab\right)=\left(-c\right).\left(-ab\right)=abc\)

\(\Rightarrowđpcm\)

6 tháng 4 2018

\(pt\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow a=b=c\Leftrightarrow\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)