(25+2 x ) mũ 3 . 5 - 3 mũ 2=4 mũ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 4.25-12.5+170:10
=100-60+17
=40+17
=57
b) (7+33:32).4-3
=(7+3).4-3
=10.4-3
=40-3
=37
c) 12:{400:[500-(125+25.7)]}
=12:{400:[500-(125+175)]}
=12:{400:[500-300]}
=12:{400:200}
=12:2
=6
d) 168+{[2.(24+32)-2560]:72}
=168+{[2.(16+9)-1]:49}
=168+{[2.25-1]:49}
=168+{[50-1]:49}
=168+{49:49}
=168+1
=169
Bài 1:
2\(x\) = 4
2\(^x\) = 22
\(x=2\)
Vậy \(x=2\)
Bài 2:
2\(^x\) = 8
2\(^x\) = 23
\(x=3\)
Vậy \(x=3\)
a, (-0,2)2 \(\times\) 5 - \(\dfrac{2^{13}\times27^3}{4^6\times9^5}\)
= 0,04 \(\times\) 5 - \(\dfrac{2^{13}\times3^9}{2^{12}\times3^{10}}\)
= 0,2 - \(\dfrac{2}{3}\)
= \(\dfrac{2}{10}\) - \(\dfrac{2}{3}\)
= - \(\dfrac{7}{15}\)
b, \(\dfrac{5^6+2^2.25^3+2^3.125^2}{26.5^6}\)
= \(\dfrac{5^6+4.5^6+8.5^6}{26.5^6}\)
= \(\dfrac{5^6.\left(1+4+8\right)}{26.5^6}\)
= \(\dfrac{1}{2}\)
a) \(5\left(x+7\right)-10=2^3\cdot5\)
\(\Rightarrow5\left(x+7\right)-10=40\)
\(\Rightarrow5\left(x+7\right)=40+10\)
\(\Rightarrow x+7=\dfrac{50}{5}\)
\(\Rightarrow x+7=10\)
\(\Rightarrow x=10-7\)
\(\Rightarrow x=3\)
b) \(9x-2\cdot3^2=3^4\)
\(\Rightarrow9x-18=81\)
\(\Rightarrow9x=81+18\)
\(\Rightarrow9x=99\)
\(\Rightarrow x=\dfrac{99}{9}\)
\(\Rightarrow x=11\)
c) \(5^{25}\cdot5^{x-1}=5^{25}\)
\(\Rightarrow5^{x-1}=5^{25}:5^{25}\)
\(\Rightarrow5^{x-1}=1\)
\(\Rightarrow5^{x-1}=5^0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
\(\left(x+1\right)^3=27\)
\(\left(x+1\right)^3=3^3\)
\(\Rightarrow x+1=3\)
\(x=2\)
\(\left(x+1\right)^3=27\)
\(< =>\left(x+1\right)^3=3.3.3=3^3\)
\(< =>x+1=3< =>x=3-1=2\)
\(\left(2x+3\right)^3=9.81\)
\(< =>\left(2x+3\right)^3=9.9.9\)
\(< =>\left(2x+3\right)^3=9^3\)
\(< =>2x+3=9< =>2x=6\)
\(< =>x=\frac{6}{2}=3\)
\(\left(25+2x\right)^3.5-3^2=4^2\\ \left(25+2x\right)^3.5=4^2+3^2=25\\ \left(25+2x\right)^3=\dfrac{25}{5}=5\)
Tới khúc này với toán 6 anh thấy số xấu quá em
\(\left(25+2x\right)^3.5-3^2=4^2\)
\(\Rightarrow\left(25+2x\right)^3.5=25\)
\(\Rightarrow\left(25+2x\right)^3=5\)
\(\Rightarrow2x+25=\sqrt[3]{5}\)
\(\Rightarrow x=\dfrac{\sqrt[3]{5}-25}{2}\)
Vậy ...