B1 :Cho B = 1+2+3+4+...+2001 . Hỏi B có chia hết cho 2 ko ? , có chia hết cho 7 ko?
B2 : Số 10^10 +8có chia hết cho 2 , cho 3 ,cho 9 ko? B9 : Chứng tỏ rằng a) số 10^100 + 5 có chia hết cho 3 & 5 ko b) 10^50 + 44 có chia hết cho 2 & 9 ko? Giúp mik vs mn oiHãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Tính tổng:
Số số hạng có trong tổng là:
(999-1):1+1=999 (số)
Số cặp có là:
999:2=499 (cặp) và dư một số đó là số 500
Bạn hãy gộp số đầu và số cuối:
(999+1)+(998+2)+.........+ . 499(số cặp) + 500 = 50400
Vậy tổng S1 = 50400
Mih sẽ giải tiếp nha
Số tự nhiên a sẽ chia hết cho 4 vì:
36+12=48 sẽ chia hết co 4
Số a ko chia hết cho 9 vì:
4+8=12 ko chia hết cho 9
c,\(10^{2010}+8\)
\(=100...0+8\)
\(=100...8\)(tổng các chữ số =9)
\(\Rightarrow10^{2010}+8⋮9\)
1a.
Số nhỏ nhất: 5, số lớn nhất 1000
Vậy có: (1000 - 5): 5 + 1 = 200 (số)
2) a) 102001 có tổng các chữ số bằng 1 => 102001 có tổng các chữ số bằng 3 => số đó chia hết cho 3; không chia hết cho 9
b) 102001 - 1 = 100....00 - 1 = 999..9 (có 2001 chữ số 9) => tổng các chữ số của nó chia hết cho 9
=> 102001 -1 chia hết cho 9 và chia hết cho 3
2) Gọi 5 số tự nhiên liên tiếp là n; n + 1; n + 2; n + 3; n + 4 ( n thuộc N)
n là số tự nhiên nên n có thể có dạng 5k; 5k + 1; 5k + 2; 5k + 3; 5k + 4
+) Nếu n = 5k : tức là n chia hết cho 5
+) Nếu n = 5k + 1 => n + 4 = 5k + 5 = 5.(k+1) chia hết cho 5 => n+ 4 chia hết cho 5
+) Nếu n = 5k + 2 => n + 3 = 5k + 5 = 5(k+1) chia hết cho 5 => n + 3 chia hết cho 5
+) Nếu n = 5k + 3 => n + 2 = 5k + 5 = 5(k+1) chia hết cho 5 => n + 2 chia hết cho 5
+) n = 5k + 4 => n +1 = 5k + 5 = 5(k+1) chia hết cho 5 => n + 1 chia hết cho 5
Vậy Trong năm số tự nhiên liên tiếp luôn có 1 số tự nhiên chia hết cho 5
1, AAA
=Ax100+Ax10+A
=Ax(100+10+1)
=Ax111
Vì 111 chia hết cho 37
=> Ax111 chia hết cho 37
hay AAA chia hết cho 37
2,AB-BA
=(AX10+B)-(BX10+A)
=AX10+B-BX10-A
=(AX10-A)+(B-BX10)
=AX(10-1)+BX(1-10)
=AX9+BX(-9)
=AX9+(-B)X9
=9X[A+(-B)]
Vì 9 chia hết cho 9=>9x[A+(-B)] chia hết cho 9
hay AB-BA chia hết cho 9
Nhớ tick cho mik nha
a) \(A=10^{100}+5\)
- Tận cùng A là số 5 \(\Rightarrow A⋮5\)
- Tổng các chữ số của A là \(1+5=6⋮3\Rightarrow A⋮3\) \(\)
\(\Rightarrow dpcm\)
b) \(B=10^{50}+44\)
- Tận cùng B là số 4 là số chẵn \(\Rightarrow B⋮2\)
- Tổng các chữ số của B là \(1+4+4=9⋮9\Rightarrow B⋮9\)
\(\Rightarrow dpcm\)
Câu 1 :
a) S1 = 1+2+3+...+999
Số số hạng trong S1 là 999
S1 = (1+999)x999:2=499500
S1 =499500
b) Số số hạng trong S2 là (2010-10):2+1=1001
S2= (10+2010)x1001:2=1011010
S2=1011010
c) Số số hạng trong S3 là (1001-21):2+1=491
S3=(21+1001)x491:2=250901
S3=250901
d)Số số hạng trong S5 là (79-1);3+1=27
S5=(1+79)x27:2=1080
S5=1080
e) Số số hạng trong S6 là (155-15):2+1=71
S6=(15+155)x71:2=6035
f) Số số hạng trong S7 là (115-15):10+1=11
S7= (15+115)x11:2=715
g) Số số hạng trong S4 là (126-24):1+1=103
S4= (24+126)x103:2=7725
Câu 2:
Ta có : a + 12 chia hết cho 36
a+12 chia hết cho 4,9
+) a+12 chia hết cho 4
Mà 12 chia hết cho 4
Suy ra: a chia hết cho 4 (nếu a ko chia hết cho 4 thì a+12 sẽ ko chia hết cho 4)
+) a+ 12 chia hết cho 9
Mà 12 ko chia hết cho 9
Suy ra a ko chia hết cho 9 ( nếu a chia hết cho 9 thì a+12 ko chia hết cho 9)
Vậy a chia hết cho 4; ko chia hết cho 9
Câu 3 :
a) Từ 1 đến 1000 có số số hạng chia hết cho 5 là:
(1000-5):5+1= 200(số)
ĐS: 200 số
b) +)1015+8 chia hết cho 2 vì 1015chia hết cho 2 và 8 chia hết cho 2
+)1015+8=10..0(15 chữ số 0)+8=10...08(14 chữ số 0)
Tổng các chữ số của số 10...08(14 chữ số 0) là 9 nên 1015+8 chia hết cho 9
c) +) 102010+8=10..0(2010 chữ số 0)+8=10...08(2009 chữ số 0)
Tổng các chữ số của số 10...08(2009 chữ số 0) là 9 nên 102010+8 chia hết cho 9
+) 102010+14=10..0(2010 chữ số 0)+14=10...014(2008 chữ số 0)
Tổng các chữ số của số 10...014(2008 chữ số 0) là 6 nên 102010+14 chia hết cho 3
+)102010+14 chia hết cho 2 vì 102010 là số chẵn và 14 là số chẵn
+)102010 -4=10..0(2010 chữ số 0)-4=99..96(2008 chữ số 9)
Tổng các chữ số của số 99...96(2008 chữ số 9) là : 2008x9+6=18078 chia hết cho 3
Nên 102010 -4 chia hết cho 3
Câu 4 :
mik bít làm nhưng buồn ngủ lắm, mai
Bài 1:
B = 1 + 2 + 3 + 4 + ... + 2001
= (2001 + 1) . (2001 - 1 + 1) : 2
= 2002 . 2001 : 2
= 2003001
Vậy B không chia hết cho 2
Bài 2:
*) Số 10¹⁰ + 8 = 10000000008
- Có chữ số tận cùng là 8 nên chia hết cho 2
- Có tổng các chữ số là 1 + 8 = 9 nên chia hết cho cả 3 và 9
Vậy 10¹⁰ + 8 chia hết cho cả 2; 3 và 9
*) 10¹⁰⁰ + 5 = 1000...005 (99 chữ số 0)
- Có chữ số tận cùng là 5 nên chia hết cho 5
- Có tổng các chữ số là 1 + 5 = 6 nên chia hết cho 3
Vậy 10¹⁰⁰ + 5 chia hết cho cả 3 và 5
b) 10⁵⁰ + 44 = 100...0044 (có 48 chữ số 0)
- Có chữ số tận cùng là 4 nên chia hết cho 2
- Có tổng các chữ số là 1 + 4 + 4 = 9 nên chia hết cho 9
Vậy 10⁵⁰ + 44 chia hết cho cả 2 và 9
B1 :
\(B=1+2+3+4+...+2001\)
\(B=\left[\left(2001-1\right):1+1\right]\left(2001+1\right):2\)
\(B=2001.2002:2=2003001\)
- Tận cùng là 1 nên B không chia hết cho 2
- Tổng các chữ số là 2+3+1=6 chia hết cho 3 nên B chia hết cho 3, không chia hết ch0 9
- Ta lấy \(2.3=6+0=6.3+0-14=4.3+3-14=1.3+0=3.3+0-7=2.3+1=7⋮7\) \(\Rightarrow B⋮7\)