Viết biểu thức sau dưới dạng tổng hai bình phương:
z2−6z+13+t2−4t
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\)
\(z^2-6z+5-t^2-4t\)
\(=z^2-6z+9-\left(t^2+4t+4\right)\)
\(=\left(z-3\right)^2-\left(t+2\right)^2\)
\(b.\)
\(4x^2-12x-y^2+2y+1\)
Câu này đề sai sao ấy em !
b, mik nghĩ đề sửa thành: \(4x^2-12x-y^2+2y+8\)
\(=4x^2-12x+9-y^2+2y-1\)
\(=\left(2x\right)^2-2.2.3.x+3^2-\left(y^2-2y+1\right)\)
\(=\left(2x-3\right)^2-\left(y-1\right)^2\)
a) \(\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)=\left(x-y\right)^2+\left(y+1\right)^2\)
b) \(\left(z^2-6z+9\right)+\left(t^2+4t+4\right)=\left(z-3\right)^2+\left(t+2\right)^2\)
c) \(\left(4x^2-4xz+z^2\right)+\left(z^2-2z+1\right)=\left(4x-z\right)^2+\left(z-1\right)^2\)
1) x2 + 10x + 26 + y2 + 2y
= (x2 + 10x + 25) + (y2 + 2y + 1)
= (x2 + 5x + 5x + 25) + (y2 + y + y + 1)
= x(x + 5) + 5(x + 5) + y(y + 1) + (y + 1)
= (x + 5)2 + (y + 1)2
2) z2 - 6z + 13 + t2 + 4t
= (z2 - 6z + 9) + (t2 + 4t + 4)
= (z2 - 3z - 3z + 9) + (t2 + 2t + 2t + 4)
= z(z - 3) - 3(z - 3) + t(t + 2) + 2(t + 2)
= (z - 3)2 + (t + 2)2
3) x2 - 2xy + 2y2 + 2y + 1
(x2 - 2xy + y2) + (y2 + 2y + 1)
= (x - xy - xy + y2) + (y2 + y + y +1)
= x(x - y) - y(x - y) + y(y + 1) + (y + 1)
= (x - y)2 + (y + 1)2
1a/ z2 - 6z + 5 - t2 - 4t = z2 - 2 . 3z + 32 - 4 - t2 - 4t = (z2 - 2 . 3z + 32) - (22 + 2 . 2t + t2) = (z - 3)2 - (2 + t)2
b/ x2 - 2xy + 2y2 + 2y2 + 1 = x2 - 2xy + y2 + y2 + 2y + 1 = (x2 - 2xy + y2) + (y2 + 2y + 1) = (x - y)2 + (y + 1)2
c/ 4x2 - 12x - y2 + 2y + 8 = (2x)2 - 12x - y2 + 2y + 32 - 1 = [ (2x)2 - 2 . 3 . 2x + 32 ] - (y2 - 2y + 1) = (2x - 3)2 - (y - 1)2
2a/ (x + y + 4)(x + y - 4) = x2 + xy - 4x + xy + y2 - 4y + 4x + 4y + 16 = x2 + (xy + xy) + (-4x + 4x) + (-4y + 4y) + y2 + 16
= x2 + 2xy + y2 + 42 = (x + y)2 + 42
b/ (x - y + 6)(x + y - 6) = x2 + xy - 6x - xy - y2 + 6y + 6x + 6y - 36 = x2 + (xy - xy) + (-6x + 6x) + (6y + 6y) - y2 - 36
= x2 - y2 + 12y - 62 = x2 - (y2 - 12y + 62) = x2 - (y2 - 2 . 6y + 62) = x2 - (y - 6)2
c/ (y + 2z - 3)(y - 2z - 3) = y2 -2yz - 3y + 2yz - 4z2 - 6z - 3y + 6z + 9 = y2 + (-2yz + 2yz) + (-3y - 3y) + (-6z + 6z) - 4z2 + 9
= y2 - 6y - 4z2 + 9 = (y2 - 6y + 9) - 4z2 = (y - 3)2 - (2z)2
d/ (x + 2y + 3z)(2y + 3z - x) = 2xy + 3xz - x2 + 4y2 + 6yz - 2xy + 6yz + 9z2 - 3xz = (2xy - 2xy) + (3xz - 3xz) - x2 + (6yz + 6yz) + 9z2 + 4y2
= -x2 + 4y2 + 12yz + 9z2 = (4y2 + 12yz + 9z2) - x2 = [ (2y)2 + 2 . 2 . 3yz + (3z)2 ] - x2 = (2y + 3z)2 - x2
1)a)x2+10x+26+y2+2y
=(x2+10x+25)+(y2+2y+1)
=(x+5)2+(y+1)2
b)x2-2xy+2y2+2y+1
=(x2-2xy+y2)+(y2+2y+1)
=(x-y)2+(y+1)2
c)z2-6z+13+t2+4t
=(z2-6z+9)+(t2+4t+4)
=(z-3)2+(t+2)2
d)4x2+2z2-4xz-2z+1
=(4x2-4xz+z2)+(z2-2z+1)
=(2x-z)2+(z-1)2
2)a)(x-3)2-4=0
<=>(x-3-2)(x-3+2)=0
<=>(x-5)(x-1)=0
<=>x-5=0 hoặc x-1=0
<=>x=5 hoặc x=1
b)x2-2x=24
<=>x2-2x-24=0
<=>(x2-6x)+(4x-24)=0
<=>x(x-6)+4(x-6)=0
<=>(x-6)(x+4)=0
<=>x-6=0 hoặc x+4=0
<=>x=6 hoặc x=-4
a) x^2 + 10x + 26 + y^2 + 2y
=x2+10x+25+y2+2y+1
=x2+2.x.5+52+y2+2.y.1+12
=(x+5)2+(y+1)2
b)x^2 - 2xy + 2y^2 + 2y +1
=x2-2xy+y2+y2+2y+1
=(x-y)2+(y+1)2
c)z^2 - 6z + 13 + t^2 + 4t
=z2-6z+9+t2+4z+4
=z2-2.z.3+32+t2+2.t.2+22
=(z-3)2+(t+2)2
d)4x^2 + 2z^2 - 4xz - 2z + 1
=4x2-4xz+z2+z2-2z+1
=(2x)2-2.2x.z+z2+z2-2z.1+12
=(2x-z)2+(z-1)2
\(1.z^2-6z+5-t^2-4t\)
\(=\left(z^2-6z+9\right)-\left(t^2+4t+4\right)\)
\(=\left(z-3\right)^2-\left(t+2\right)^2\)
\(3,x^2-2xy+2y^2+2y+1\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)\)
\(=\left(x-y\right)^2+\left(y+1\right)^2\)
a) \(x^2+10x+26+y^2+2y\)
\(=\left(x^2+10x+25\right)+\left(y^2+2y+1\right)\)
\(\left(x+5\right)^2+\left(y+1\right)^2\)
b) \(x^2-2xy+2y^2+2y+1\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)\)
\(=\left(x-y\right)^2+\left(y+1\right)^2\)
c) \(z^2-6z+13+t^2+4t\)
\(=\left(z^2-6x+9\right)+\left(t^2+4t+4\right)\)
\(=\left(z-3\right)^2+\left(t+2\right)^2\)
d) \(4x^2-2z^2-2xz-2z+1\)
\(=\left(4x^2-4xz+z^2\right)+\left(z^2-2z+1\right)\)
\(=\left(2x-z\right)^2+\left(z-1\right)^2\)
a) x2+10x+26+y2+2y
=x2+10x+25+y2+2y+1
=(x+5)2+(y+1)2
b) z2-6z+5-t2-4t
=z2-6z+9-t2-4t-4
=(z-3)2-(t2+4t+4)
=(z-3)2-(t+2)2
c)x2-2xy+2y2+2y+1
=x2-2xy+y2+y2+2y+1
=(x-y)2+(y+1)2
d) 4x2-12x-y2+2y+8
=4x2-12x+9-y2+2y-1
=(2x-3)2-(y2-2y+1)
=(2x-3)2-(y-1)2
z2−6z+13+t2−4t
=z2- 6z+9+t2- 4t +4
=z2-2.z.3+32+t2-2.t.2+22
=(z-3)2+(t-2)2