K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi O là trung điểm của BC

góc AFH+góc AEH=180 độ

=>AFHE nội tiếp đường tròn đường kính AH

=>AFHE nội tiếp (M)

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp đường tròn đường kính BC

=>BFEC nội tiếp (O)

góc MFO=góc MFH+góc OFH

=góc MHF+góc OCF

=góc FBC+góc FCB=90 độ

=>MF là tiếp tuyến của (O)

Xét ΔMFO và ΔMEO có

MF=ME

OF=OE

MO chung

=>ΔMFO=ΔMEO

=>góc MEO=90 độ

=>ME là tiếp tuyến của (O)

9 tháng 8 2023

Bạn cần phải chứng minh E, F ϵ ( O ) nữa nhé, vì vẫn có thể xảy ra trường hợp ME, MF là cát tuyến hoặc nằm ngoài ( O ). Phần này thì dùng đường trung tuyến trong tam giác vuông là xong.

 

14 tháng 5 2023

Ai giúp em nhanh bài tập này được không ạ?

 

16 tháng 8 2021

A B C D E F O I J M P Q L K T

a) Vì tứ giác BFEC nội tiếp nên \(\widehat{PFB}=\widehat{ACB}=\widehat{PBF}\) suy ra \(PF=PB\)

Suy ra \(MP\perp AB\) vì MP là trung trực của BF. Do đó \(MP||CF\). Tương tự \(MQ||BE\)

b) Dễ thấy M,I,J đều nằm trên trung trực của EF cho nên chúng thẳng hàng. Vậy IJ luôn đi qua M cố định.

c) Gọi FK cắt AD tại T ta có \(FK\perp AD\) tại T. Theo hệ thức lượng \(IE^2=IF^2=IT.IL\)

Suy ra \(\Delta TIE~\Delta EIL\). Lại dễ có \(EI\perp EM\), suy ra ITKE nội tiếp

Do vậy \(\widehat{ILE}=\widehat{IET}=\widehat{IKT}=90^0-\widehat{LIK}\). Vậy \(IK\perp EL.\)

1: góc ABP=1/2*sđ cung AP=90 độ

=>BP//CH

góc ACP=1/2*sđ cung AP=90 độ

=>CP//BH

mà BP//CH

nên BHCP là hình bình hành

=>BC cắt HP tại trung điểm của mỗi đường

=>M là trung điểm của HP

a:

H đối xứng K qua BC

=>BH=BK CH=CK

Xét ΔBHC và ΔBKC có

BH=BK

HC=KC

BC chung

=>ΔBHC=ΔBKC

=>góc BHC=góc BKC

góc BHC=180 độ-góc HBC-góc HCB

=90 độ-góc HBC+90 độ-góc HCB

=góc ABC+góc ACB

=180 độ-góc BAC

=>góc BAC+góc BHC=180 độ

=>góc BAC+góc BKC=180 độ

=>ABKC là tứ giác nội tiếp

b: Xét (O) có

ΔABM nội tiếp

AM là đường kính

=>ΔABM vuông tại B

=>BM//CH

Xét (O) có

ΔACM nội tiếp

AM là đường kinh

=>ΔACM vuông tại C

=>CM//BH

mà BM//CH

nên BHCM là hình bình hành

=>CB căt HM tại trung điểm của mỗi đường

=>H,I,M thẳng hàng

a: BC vuông góc AH tại H

nên BC là tiếp tuyến của (A)

b: Xét (A) có

BH,BE là tiếp tuyến

nên AB là phân giác của góc HAE(1)

Xét (A) có

CF,CH là tiếp tuyến

nên AC là phân giác của góc HAF(2)

Từ (1), (2) suy ra góc FAE=2*90=180 độ

=>F,A,E thẳng hàng

c: \(AH=\sqrt{4\cdot9}=6\left(cm\right)\)

tứ giác BFEC có hai góc kề nhau cùng nhìn đoạn BC dưới một góc vuông : BFCˆ=BECˆ(=90)BFC^=BEC^(=90) ==> Tức giác BFEC là tứ giác nội tiếp

==> 4 điểm B,E,F,C cùng thuộc một đường tròn.