B=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\dfrac{1}{\sqrt{x}-2}\)
a)Tìm điều kiện xác định
b)Rút gọn
c) tìm B khi x=16
d)tìm điều kiện để B>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)ĐKXĐ:{(x > 0),(x \ne 4):}`
`b)` Với `x > 0,x \ne 4` có:
`A=[\sqrt{x}(\sqrt{x}+2)+\sqrt{x}(\sqrt{x}-2)]/[x-4].[x-4]/[\sqrt{4x}]`
`A=[x-2\sqrt{x}+x-2\sqrt{x}]/[2\sqrt{x}]`
`A=[2\sqrt{x}(\sqrt{x}-2)]/[2\sqrt{x}]=\sqrt{x}-2`
`c)` Với `x > 0,x \ne 4` có:
`A < 3 <=>\sqrt{x}-2 < 3<=>\sqrt{x} < 5<=>x < 25`
Kết hợp đk
`=>0 < x < 25 ,x \ne 4`
Lời giải:
a. ĐKXĐ: $x>0; x\neq 1$
b. \(P=\left[\frac{x}{\sqrt{x}(\sqrt{x}-1)}-\frac{1}{\sqrt{x}(\sqrt{x}-1)}\right]: \left[\frac{\sqrt{x}-1}{(\sqrt{x}-1)(\sqrt{x}+1)}+\frac{2}{(\sqrt{x}-1)(\sqrt{x}+1)}\right]\)
\(=\frac{x-1}{\sqrt{x}(\sqrt{x}-1)}:\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}-1)}:\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)} =\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{1}{\sqrt{x}-1}=\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}}=\frac{x-1}{\sqrt{x}}\)
c.
$P<0\Leftrightarrow \frac{x-1}{\sqrt{x}}<0$
$\Leftrightarrow x-1<0$
$\Leftrightarrow x<1$. Kết hợp đkxđ suy ra $0< x<1 $
a) \(x>0,x\ne1\)
b) \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1}{\sqrt{x}-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}}.\left(\sqrt{x}-1\right)=\dfrac{x-1}{\sqrt{x}}\)
c) \(P< 0\Rightarrow\dfrac{x-1}{\sqrt{x}}< 0\) mà \(\sqrt{x}>0\Rightarrow x-1< 0\Rightarrow x< 1\Rightarrow0< x< 1\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)
b: Ta có: \(D=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{5\sqrt{x}+5}{x-4}\right)\cdot\dfrac{x-4}{\sqrt{x}}\)
\(=\dfrac{x+4\sqrt{x}+4-x+4\sqrt{x}-5\sqrt{x}-5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{x-4}{\sqrt{x}}\)
\(=\dfrac{3\sqrt{x}-1}{\sqrt{x}}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)
Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right):\dfrac{2\sqrt{x}}{x-4}\)
\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\dfrac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\left(\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\dfrac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{2x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\)
\(=\sqrt{x}\)
b) Để P>4 thì \(\sqrt{x}>4\)
hay x>16
Kết hợp ĐKXĐ, ta được: x>16
Vậy: Khi x>16 thì P>4
a) ĐKXĐ: \(x\ge0;x\ne1\)
b) \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{2}{\sqrt{x}+1}\left(x\ge0;x\ne1\right)\\ P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{2}\\ P=\dfrac{x-\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{2}\\ P=\dfrac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{2}\\ P=\dfrac{-\sqrt{x}}{\sqrt{x}-1}\)
a) ĐKXĐ : \(x\sqrt{x}-1\ge0\Leftrightarrow x\ge1\)
b) \(B=\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right).\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(=\dfrac{2x+1-\sqrt{x}.\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}.\left(x-2\sqrt{x}+1\right)\)
\(=\dfrac{1}{\sqrt{x}-1}.\left(\sqrt{x}-1\right)^2=\sqrt{x}-1\)
c) Có : \(x=\dfrac{2-\sqrt{3}}{2}=\dfrac{4-2\sqrt{3}}{4}=\dfrac{\left(\sqrt{3}-1\right)^2}{4}\)
Khi đó B = \(\dfrac{\sqrt{3}-1}{2}-1=\dfrac{\sqrt{3}-3}{2}\)
\(a,\) B có nghĩa \(\Leftrightarrow\left[{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(b,B=\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(=\dfrac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{1+x\sqrt{x}-\sqrt{x}\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\)
\(=\dfrac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{1+x\sqrt{x}-\sqrt{x}-x}{1+\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{\sqrt{x}\left(x-1\right)-\left(x-1\right)}{1+\sqrt{x}}\)
\(=\dfrac{\left(x-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\sqrt{x}-1\)
\(c,x=\dfrac{2-\sqrt{3}}{2}\Rightarrow B=\sqrt{\dfrac{2-\sqrt{3}}{2}}-1\)
\(=\dfrac{\sqrt{2}.\sqrt{2-\sqrt{3}}}{\sqrt{2}.\sqrt{2}}-\sqrt{2}\) (Nhân \(\sqrt{2}\) để khử căn dưới mẫu)
\(=\dfrac{\sqrt{4-2\sqrt{3}}-2\sqrt{2}}{2}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}-2\sqrt{2}}{2}\)
\(=\dfrac{\left|\sqrt{3}-1\right|-2\sqrt{2}}{2}\)
\(=\dfrac{\sqrt{3}-1-2\sqrt{2}}{2}\)
\(a,dkxd:x\ge0,x\ne4\)
\(b,B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\dfrac{1}{\sqrt{x}-2}\\ =\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{\sqrt{x^2}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\\ =\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(c,x=16\left(tm\right)\Rightarrow B=\dfrac{\sqrt{16}+2}{\sqrt{16}\left(\sqrt{16}-2\right)}=\dfrac{4+2}{4\left(4-2\right)}=\dfrac{6}{8}=\dfrac{3}{4}\)
\(d,B>0\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\Leftrightarrow\sqrt{x}+2>0\Leftrightarrow\sqrt{x}>-2\left(ktm\right)\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)< 0\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)
Kết hợp với \(dk:x\ge0\) ta kết luận \(0\le x< 4\) thì \(B>0\).
a) Điều kiện xác định:
\(\left\{{}\begin{matrix}x-2\sqrt{x}\ne0\\x\ge0\end{matrix}\right.\)\(\Leftrightarrow x>0,x\ne4\)
Vậy...
b) \(B=\dfrac{\sqrt{x}.\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)^2}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\)\(=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
Vậy \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
c) Tại x=16 ( thỏa mãn đk) thay vào B đã rút gọn ta được:
\(B=\dfrac{\sqrt{16}+2}{\sqrt{16}\left(\sqrt{16}-2\right)}=\dfrac{3}{4}\)
d) \(B>0\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\)
\(\Leftrightarrow\sqrt{x}-2>0\)\(\Leftrightarrow\sqrt{x}>2\Leftrightarrow x>4\)
Vậy x>4 thì B>0