K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

30. Gọi G là trọng tâm của tam giác ABC. Trên tia AG lấy điểm G’ sao cho G là trung điểm của AG’

a) So sánh các cạnh của  tam giác BGG’ với các đường trung tuyến của tam giác ABC

b) So sánh các đường trung tuyến của tam giác BGG’ với các cạnh của tam giác ABC.

Hướng dẫn:

a) So sánh các cạnh của  ∆BGG’ với các đường trung tuyến của  ∆ABC BG cắt AC tại N

CG cắt AB tại E

G là trọng tâm của  ∆ABC

 => GA = AM

Mà GA = GG’ ( G là trung điểm của AG ‘)

GG’ = AM

Vì G là trọng tâm của  ∆ABC => GB = BN

Mặt khác : GM = AG ( G là trọng tâm )

AG = GG’ (gt)

  GM = GG’

M là trung điểm GG’

Do đó  ∆GMC =  ∆G’MB vì :

GM = MG’

MB = MC

=> BG' = CG

mà CG = CE (G là trọng tâm  ∆ABC)

=> BG' = CE

Vậy mỗi cạnh của ∆BGG' bằng  đường trung tuyến của ∆ABC

b) So sánh các đường trung tuyến của ∆BGG' với cạnh ∆ABC

ta có: BM là đường trung tuyến ∆BGG'

mà M là trung điểm của BC nên BM = BC

Vì IG = BG (I là trung điểm BG)

GN = BG ( G là trọng tâm)

=> IG = GN

Do đó ∆IGG' = ∆NGA (cgc)  => IG' = AN  => IG' = 

- Gọi K là trung điểm BG => GK là trung tuyến ∆BGG'

Vì GE = GC (G là trọng tâm ∆ABC)

=> GE = BG

mà K là trung điểm BG' => KG' = EG

Vì ∆GMC = ∆G'BM (chứng minh trên)

=>  (lại góc sole trong)

=> CE // BG' =>  (đồng vị)

Do đó ∆AGE = ∆GG'K (cgc)  => AE = GK

mà AE = AB nên GK = AB

Vậy mỗi đường trung tuyến ∆BGG' bằng một nửa cạnh của tam giác ABC song song với nó



Xem thêm tại: http://loigiaihay.com/bai-30-trang-67-sgk-toan-lop-7-tap-2-c42a5626.html#ixzz4l0rlUT9x

19 tháng 4 2017

Hướng dẫn:

a) So sánh các cạnh của ∆BGG’ với các đường trung tuyến của ∆ABC BG cắt AC tại N

CG cắt AB tại E

G là trọng tâm của ∆ABC

=> GA = AM

Mà GA = GG’ ( G là trung điểm của AG ‘)

GG’ = AM

Vì G là trọng tâm của ∆ABC => GB = BN

Mặt khác : GM = AG ( G là trọng tâm )

AG = GG’ (gt)

GM = GG’

M là trung điểm GG’

Do đó ∆GMC = ∆G’MB vì :

GM = MG’

MB = MC

=> BG' = CG

mà CG = CE (G là trọng tâm ∆ABC)

=> BG' = CE

Vậy mỗi cạnh của ∆BGG' bằng đường trung tuyến của ∆ABC

b) So sánh các đường trung tuyến của ∆BGG' với cạnh ∆ABC

ta có: BM là đường trung tuyến ∆BGG'

mà M là trung điểm của BC nên BM = BC

Vì IG = BG (I là trung điểm BG)

GN = BG ( G là trọng tâm)

=> IG = GN

Do đó ∆IGG' = ∆NGA (cgc) => IG' = AN => IG' =

- Gọi K là trung điểm BG => GK là trung tuyến ∆BGG'

Vì GE = GC (G là trọng tâm ∆ABC)

=> GE = BG

mà K là trung điểm BG' => KG' = EG

Vì ∆GMC = ∆G'BM (chứng minh trên)

=> (lại góc sole trong)

=> CE // BG' => (đồng vị)

Do đó ∆AGE = ∆GG'K (cgc) => AE = GK

mà AE = AB nên GK = AB

Vậy mỗi đường trung tuyến ∆BGG' bằng một nửa cạnh của tam giác ABC song song với nó

19 tháng 4 2017

Hướng dẫn làm bài:

a)So sánh các cạnh của ∆BGG’ với các đường trung tuyến của ∆ABC

BG cắt AC tại N

CG cắt AB tại E

G là trọng tâm của ∆ABC

=> GA=23AMGA=23AM

Mà GA = GG’ (G là trung điểm của AG’)

=> GG′=23AMGG′=23AM

Vì G là trọng tâm của ∆ABC => GB=23BNGB=23BN

Mặt khác :

M là trung điểm GM=12AG(TT)AG=GG′(Gt)}=>GM=12GG′GM=12AG(TT)AG=GG′(Gt)}=>GM=12GG′

Do đó ∆GMC=∆G’MB vì ⎧⎪⎨⎪⎩GM=MG′MB=MCˆGMC=ˆG′MB{GM=MG′MB=MCGMC^=G′MB^

=> BG′=CGCG=23CEBG′=CGCG=23CE (G là trọng tâm tam giác ABC)

=>BG′=23CE=>BG′=23CE

Vậy mỗi cạnh của ∆BGG’ bằng 2323 đường trung tuyến của ∆ABC

b)So sánh các đường trung tuyến của ∆BGG’ với cạnh ∆ABC.

-Ta có: BM là đường trung tuyến ∆BGG’

Mà M là trung điểm của BC nên BM=12BCBM=12BC

IG=12BGIG=12BG (Vì I là trung điểm BG)

GN=12BGGN=12BG (G là trọng tâm)

=> IG = GN

Do đó ∆IGG’=∆NGA (c.g.c) => IG′=AN=>IG′=AC2IG′=AN=>IG′=AC2

-Gọi K là trung điểm BG => GK là trung điểm ∆BGG’

GE=12GCGE=12GC (G là trọng tâm tam giác ABC)

BG' = GC (Chứng minh trên)

=>GE=12BG=>GE=12BG

Mà K là trung điểm BG’ =>KG’ = EG

Vì ∆GMC = ∆G’MB (chứng minh trên)

=> ˆGCM=ˆG′BMGCM^=G′BM^ (So le trong)

=>CE // BG’ => ˆAGE=ˆAG′BAGE^=AG′B^ (đồng vị)

Do đó ∆AGE = ∆GG’K (c.g.c) =>AE = GK

AE=12AB⇒GK=12AB

6 tháng 3 2018

Bài giải

Giải bài 30 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

a) Gọi M, N, E lần lượt là trung điểm của AB, BC, CA.

Giải bài 30 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

Vậy mỗi cạnh của ΔBGG' bằng 2/3 đường trung tuyến của ΔABC.

b) Gọi I, K lần lượt là trung điểm của BG và BG'.

Giải bài 30 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

Giải bài 30 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7Vậy mỗi đường trung tuyến của ΔBGG' bằng một nửa cạnh của ΔABC tương ứng với nó.~Hok tốt~  
1 tháng 4 2016

gọi tam giác ABC có các đường trung tuyến là AI, BH, CF 
a, nhận xét: ta thấy tam giác BGG' có các cạnh =2/3 các trung tuyến của tam giác ABC theo các cặp tương ứng 
BG=2/3BH , BG'=2/3CF , GG'=2/3AI 
chưng minh: 
ta có : 
*BG=2/3BH theo tính chất đường trung tuyến 
* xét tứ giác BGCG' có 
- I là trung điểm của BC ( theo giả thiết) 
- I là trung điểm của GG' 
VÌ: GG'=AG 
GI=1/2AG 
=> GI =1/2GG' 
=> I là trung điểm của GG' 
=>tứ giác BGCG' là hình thoi 
=>BG'=GC 
=>BG'=2/3CF 
*như chứng minh trên ta có 
AG=GG' 
mà AG=2/3AI 
=> GG'=2/3AI 
=> ĐIỀU CẦN CHỨNG MINH 
b,gọi các điểm J,K lằn lượt là trung điểm của BG, BG' 
nhận xét; ta thấy các đường trung tuyến của BGG'=1/2 các cạnh của ABC tương ứng 
*BI=1/2BC( gia thuyết) 
*cm:GK=1/2AB 
xét tam gác ABG' 
G là trung điểm của AG' 
K là trung điểm của BG' 
=> GK=1/2AB (tính chất đường trung tuyến) 
*cm; G'J=1/2AC 
GH=1/2BG 
JG=1/2BG 
=>GH=JG 
GA=GG'(giả thuyết) 
=> tứ giác AJG'H là hình thoi 
=> JG'=AH 
AH=1/2AC 
=>JG'=1/2AC 
điều phải chứng minh 

1 tháng 4 2016

a) So sánh các cạnh của tam giác BGG' với các đường trung tuyến của tam giác ABC: 
gọi M;N;P là trung điểm của BC; AC; AB 
cạnh của tam giác BGG" là: 
BG = 2/3.BN 
GG' = AG = 2/3.AM 
BG' =- CG = 2/3.CP ( do tam giác BG'M = CMG => BG'=CG) 

b) So sánh các đường trung tuyến của tam giác BGG' với các cạnh của tam giác ABC: 
Gọi I là trung điểm GG', K là trung điểm BG 
BM = BC/2 
GI = AB/2 ( AG là đường trung bình của tam giác BGG') 
G'K = AN = AC/2 ( tg ANG= tgG'GK => G'K= AN)

28 tháng 3 2019

a) So sánh các cạnh của ∆BGG’ với các đường trung tuyến của ∆ABC.

Gọi M, N, E lần lượt là trung điểm của BC, CA, AB.

- G là trọng tâm của ∆ABC

  ⇒⇒ GA = \(\frac{2}{3}\) AM

Mà GA = GG’ (G là trung điểm của AG’)

  ⇒⇒ GG' = \(\frac{2}{3}\) AM

- Vì G là trọng tâm của ∆ABC ⇒⇒ GB = \(\frac{2}{3}\) BN

- Ta có:  

GM = \(\frac{1}{2}\) AG (do G là trọng tâm) và AG = GG' (gt)

⇒⇒ GM = \(\frac{1}{2}\) GG'

Xét ∆GMC và ∆G’MB có: 

GM = MG' 

MB = MC

ˆGMC=ˆG′MBGMC^=G′MB^ (hai góc đối đỉnh)

Vậy  ∆GMC=∆G’MB.

 ⇒⇒ BG' = CG

Mà CG = \(\frac{2}{3}\) CE (G là trọng tâm tam giác ABC) 

 ⇒⇒ BG' =  \(\frac{2}{3}\) CE

Vậy mỗi cạnh của ∆BGG’ bằng \(\frac{2}{3}\) đường trung tuyến của ∆ABC.



 

28 tháng 3 2019

b) So sánh các đường trung tuyến của ∆BGG’ với các cạnh của ∆ABC.

- Ta có: BM là đường trung tuyến ∆BGG’

Mà M là trung điểm của BC nên BM = \(\frac{1}{2}\) BC

Vì IG = \(\frac{1}{2}\) BG (Do I là trung điểm BG)

GN = \(\frac{1}{2}\) BG (G là trọng tâm)

⇒⇒  IG = GN

Xét  ∆IGG’ và ∆NGA có:

 IG = GN (cmt)

GG' = GA (gt)

ˆIGG′=ˆNGAIGG′^=NGA^ (hai góc đối đỉnh)

Vậy ∆IGG’ = ∆NGA (c.g.c) ⇒  IG' = AN ⇒  IG' = AC2AC2

- Gọi K là trung điểm BG ⇒  GK là trung tuyến của ∆BGG’

Vì GE =  \(\frac{1}{2}\) GC (G là trọng tâm tam giác ABC)

BG' = GC (cmt)

⇒⇒  GE =\(\frac{1}{2}\) BG'

Mà K là trung điểm BG’ ⇒⇒ KG’ = EG

Vì ∆GMC = ∆G’MB (cmt)

⇒⇒   ˆGCM=ˆG′BMGCM^=G′BM^ (hai góc tương ứng)

⇒⇒  CE // BG’ ⇒   ˆAGE=ˆAG′BAGE^=AG′B^ (đồng vị)

Xét ∆AGE và ∆GG’K có:

 EG = KG’ (cmt)

AG = GG' (gt)

ˆAGE=ˆAG′BAGE^=AG′B^ (cmt)

Vậy ∆AGE = ∆GG’K (c.g.c) ⇒⇒  AE = GK

Mà AE = \(\frac{1}{2}\) AB ⇒⇒  GK = \(\frac{1}{2}\) AB

Vậy mỗi đường trung tuyến của ∆BGG’ bằng một nửa cạnh của tam giác ABC song song với nó

2 tháng 5 2019

A B C G' G P M N

a) Gọi trung điểm BC, CA, AB lần lượt là M, N, P.

⇒ AM, BN, CP là các đường trung tuyến, G là trọng tâm của ΔABC

Theo tính chất đường trung tuyến của tam giác ta có:

GB = 2/3.BN (1)

GA = 2/3.AM, mà GA = GG’ (do G là trung điểm của AG’) ⇒ GG’ = 2/3.AM (2)

GM=1/2.AG, mà AG=GG’ ⇒ GM=1/2.GG’ ⇒ M là trung điểm của GG’ hay GM = GM’ .

Xét ΔGMC và ΔG’MB có:

      GM = G’M (chứng minh trên)

      Giải bài 30 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

      MC = MB

⇒ ΔGMC = ΔG’MB (c.g.c)

⇒ GC = G’B (hai cạnh tương ứng).

Mà CG = 2/3.CP (tính chất đường trung tuyến) ⇒ G’B = 2/3.CP (3)

Từ (1), (2), (3) ta có : GG’ = 2/3.AM , GB = 2/3.BN, G’B = 2/3.CP.

2 tháng 5 2019

A B C M G' P N K G I

b) Gọi I, K lần lượt là trung điểm của BG, BG’.

Giải bài 30 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

* M là trung điểm GG’⇒ BM là đường trung tuyến ΔBGG.

Mà M là trung điểm BC ⇒ BM = ½ .BC (4)

Giải bài 30 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

Xét ΔIGG’ và ΔNGA có:

      IG = GN (chứng minh trên)

      Giải bài 30 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

      GG’ = GA (Vì G là trung điểm AG’)

⇒ ΔIGG’ = ΔNGA (c.g.c)

⇒ G’I = AN (hai cạnh tương ứng)

Giải bài 30 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

Mà GC = BG’ (chứng minh phần a))

⇒ Nên PG = BK.

ΔGMC = ΔG’MB (chứng minh câu a)

Giải bài 30 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

Xét ΔPGB và ΔKBG có:

      PG = BK (chứng minh trên)

      Giải bài 30 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

      BG chung

⇒ ΔPGB = ΔKBG (c.g.c)

⇒ PB = GK (hai cạnh tương ứng)

Giải bài 30 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7