\(cho\)\(a\ge0\),\(b\ge0\)
\(cm\) \(\frac{a+b}{2}\) \(\ge\sqrt{ab}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(a-\sqrt{a}+\frac{1}{4}=\left(\sqrt{a}-\frac{1}{2}\right)^2\ge0\forall a\ge0\Rightarrow a+\frac{1}{4}\ge\sqrt{a}\)
\(b-\sqrt{b}+\frac{1}{4}=\left(\sqrt{b}-\frac{1}{2}\right)^2\ge0\forall b\ge0\Rightarrow b+\frac{1}{4}\ge\sqrt{b}\)
\(\Rightarrow a+\frac{1}{4}+b+\frac{1}{4}\ge\sqrt{a}+\sqrt{b}\)
\(\Rightarrow a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\)(đpcm)
Áp dụng BĐT căn trung bình bình phương ta có:
*BĐT này mk ko biết rõ tên nó viết cả ra :v, dạng tổng quát nó đây (kiểu AM-GM ấy)*
với a1;a2;...an ko âm thì \(\sqrt{\frac{a_1^2+b_1^2+....+a_n^2}{n}}\ge\frac{a_1+a_2+...+a_n}{n}\)
\(VT=\sqrt{\frac{a+b}{2}}=\sqrt{\frac{\sqrt{a^2}+\sqrt{b^2}}{2}}\)
\(\ge\frac{\sqrt{a}+\sqrt{b}}{2}=VP\)
Dấu "=" xảy ra khi \(a=b\)
Ta có: ( √a - √b)² ≥ 0 ( voi moi a , b ≥ 0 )
<=> a - 2√ab + b ≥ 0
<=> a + b ≥ 2√ab
<=> (a + b)/2 ≥ √ab
dau "=" xay ra khi √a - √b = 0 <=> a = b
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(a+b-2\sqrt{ab}\ge0\)
\(a+b\ge2\sqrt{ab}\)
\(\frac{a+b}{2}\ge\sqrt{ab}\)
a) \(a+b-2\sqrt{ab}\ge0\)
<=> \(\left(\sqrt{a}+\sqrt{b}\right)^2\ge0\) (luôn đúng )
=> đpcm
b) \(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\Leftrightarrow\sqrt{\dfrac{a+b}{2}^2}\ge\left(\dfrac{\sqrt{a}+\sqrt{b}}{2}\right)^2\)
<=> \(\dfrac{a+b}{2}\ge\dfrac{a+b+2\sqrt{ab}}{4}\)
<=> \(\dfrac{2a+2b}{4}\ge\dfrac{a+b+2\sqrt{ab}}{4}\Leftrightarrow2a+2b\ge a+b+2\sqrt{ab}\)
<=> \(2a+2b-a-b-2\sqrt{ab}\ge0\)
<=> \(a-2\sqrt{ab}+b\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)
=> đpcm
\(bdt\Leftrightarrow\left(\frac{a^3+b^3}{2}\right)^2\ge\left(\frac{a^2+b^2}{2}\right)^3\Leftrightarrow\frac{a^6+b^6+2a^3b^3}{4}\ge\frac{a^6+b^6+3a^4b^2+3a^2b^4}{8}\)
\(\Leftrightarrow a^6+b^6+4a^3b^3\ge3a^4b^2+3a^2b^4\)
Áp dụng bất đẳng thức trung bình cộng - trung bình nhân:
\(a^6+a^3b^3+a^3b^3\ge3\sqrt[3]{a^6.\left(a^3b^3\right)^2}=3a^4b^2\)
\(b^6+a^3b^3+a^3b^3\ge3\sqrt[3]{b^6.\left(a^3b^3\right)^2}=3a^2b^4\)
Cộng 2 bất đẳng thức trên theo vế ta có đpcm.
\(BDT\Leftrightarrow\frac{1}{1+a^2}+\frac{1}{1+b^2}-\frac{2}{1+ab}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\) đúng
Ta có :
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
<=> \(a+b-2\sqrt{ab}\ge0\)
<=> \(a+b\ge2\sqrt{ab}\)
<=> \(\frac{a+b}{2}\ge\sqrt{ab}\)