K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

Ta có :

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

<=> \(a+b-2\sqrt{ab}\ge0\)

<=> \(a+b\ge2\sqrt{ab}\)

<=> \(\frac{a+b}{2}\ge\sqrt{ab}\)

9 tháng 8 2017

mịa c đâu ra vậy

9 tháng 8 2017

Ta có :

\(a-\sqrt{a}+\frac{1}{4}=\left(\sqrt{a}-\frac{1}{2}\right)^2\ge0\forall a\ge0\Rightarrow a+\frac{1}{4}\ge\sqrt{a}\)

\(b-\sqrt{b}+\frac{1}{4}=\left(\sqrt{b}-\frac{1}{2}\right)^2\ge0\forall b\ge0\Rightarrow b+\frac{1}{4}\ge\sqrt{b}\)

\(\Rightarrow a+\frac{1}{4}+b+\frac{1}{4}\ge\sqrt{a}+\sqrt{b}\)

\(\Rightarrow a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\)(đpcm)

24 tháng 7 2017

Áp dụng BĐT căn trung bình bình phương ta có: 

*BĐT này mk ko biết rõ tên nó viết cả ra :v, dạng tổng quát nó đây (kiểu AM-GM ấy)*

 với a1;a2;...an ko âm thì \(\sqrt{\frac{a_1^2+b_1^2+....+a_n^2}{n}}\ge\frac{a_1+a_2+...+a_n}{n}\)

\(VT=\sqrt{\frac{a+b}{2}}=\sqrt{\frac{\sqrt{a^2}+\sqrt{b^2}}{2}}\)

\(\ge\frac{\sqrt{a}+\sqrt{b}}{2}=VP\)

Dấu "=" xảy ra khi \(a=b\)

3 tháng 7 2018

a) \(a+b-2\sqrt{ab}\ge0\)

<=> \(\left(\sqrt{a}+\sqrt{b}\right)^2\ge0\) (luôn đúng )

=> đpcm

b) \(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\Leftrightarrow\sqrt{\dfrac{a+b}{2}^2}\ge\left(\dfrac{\sqrt{a}+\sqrt{b}}{2}\right)^2\)

<=> \(\dfrac{a+b}{2}\ge\dfrac{a+b+2\sqrt{ab}}{4}\)

<=> \(\dfrac{2a+2b}{4}\ge\dfrac{a+b+2\sqrt{ab}}{4}\Leftrightarrow2a+2b\ge a+b+2\sqrt{ab}\)

<=> \(2a+2b-a-b-2\sqrt{ab}\ge0\)

<=> \(a-2\sqrt{ab}+b\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)

=> đpcm

3 tháng 7 2018

thanks!!!

8 tháng 11 2015

\(bdt\Leftrightarrow\left(\frac{a^3+b^3}{2}\right)^2\ge\left(\frac{a^2+b^2}{2}\right)^3\Leftrightarrow\frac{a^6+b^6+2a^3b^3}{4}\ge\frac{a^6+b^6+3a^4b^2+3a^2b^4}{8}\)

\(\Leftrightarrow a^6+b^6+4a^3b^3\ge3a^4b^2+3a^2b^4\)

Áp dụng bất đẳng thức trung bình cộng - trung bình nhân:

\(a^6+a^3b^3+a^3b^3\ge3\sqrt[3]{a^6.\left(a^3b^3\right)^2}=3a^4b^2\)

\(b^6+a^3b^3+a^3b^3\ge3\sqrt[3]{b^6.\left(a^3b^3\right)^2}=3a^2b^4\)

Cộng 2 bất đẳng thức trên theo vế ta có đpcm.

8 tháng 11 2015

HD: Mũ 6 hai vế nên nhé.

11 tháng 4 2020

GIÚP MK NHANH NHÉ

14 tháng 1 2017

tự tìm hiểu

14 tháng 1 2017

\(BDT\Leftrightarrow\frac{1}{1+a^2}+\frac{1}{1+b^2}-\frac{2}{1+ab}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\) đúng

6 tháng 8 2019

Áp dụng cô si

\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\\\frac{1}{c}+\frac{1}{b}\ge2\sqrt{\frac{1}{cb}}\\\frac{1}{a}+\frac{1}{c}\ge2\sqrt{\frac{1}{ac}}\end{cases}}\)\(\Rightarrow\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}\)

\("="\Leftrightarrow a=b=c=0\)

\(\hept{\begin{cases}\sqrt{x}\le\frac{x+1}{2}\\\sqrt{y-1}\le\frac{y-1+1}{2}\\\sqrt{z-2}\le\frac{z-2+1}{2}\end{cases}}\)\(\Rightarrow\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{x+1+y-1+1+z-2+1}{2}\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{x+y+z}{2}\)

\("="\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)

18 tháng 10 2020

Sửa ĐK của c) : a, b, c > 0

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}=\frac{2}{\sqrt{ab}}\)

\(\frac{1}{b}+\frac{1}{c}\ge2\sqrt{\frac{1}{bc}}=\frac{2}{\sqrt{bc}}\)

\(\frac{1}{c}+\frac{1}{a}\ge2\sqrt{\frac{1}{ca}}=\frac{2}{\sqrt{ca}}\)

Cộng các vế tương ứng

=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\ge\frac{2}{\sqrt{ab}}+\frac{2}{\sqrt{bc}}+\frac{2}{\sqrt{ca}}\)

=> \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge2\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)

=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)

=> đpcm

Đẳng thức xảy ra khi a = b = c

29 tháng 5 2016

Ta có : \(\sqrt{\text{a}-\sqrt{\text{b}}}\text{=}\sqrt{\frac{a+\sqrt{a^2-b}}{2}}-\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\) \(\left(b\ge0,a\ge\sqrt{b}\right)\)

Đặt \(x=\sqrt{a-\sqrt{b}}+\sqrt{a+\sqrt{b}}\) => \(x>0\Rightarrow x=\sqrt{x^2}\)

Ta có  : \(x^2=2a+2\sqrt{a^2-b}=4\left(\frac{a+\sqrt{a^2-b}}{2}\right)\)\(\Rightarrow x=2\sqrt{\frac{a+\sqrt{a^2-b}}{2}}\)

hay \(\sqrt{a-\sqrt{b}}+\sqrt{a+\sqrt{b}}=2\sqrt{\frac{a+\sqrt{a^2-b}}{2}}\)(1)

Đặt \(y=\sqrt{a+\sqrt{b}}-\sqrt{a-\sqrt{b}}\Rightarrow y>0\Rightarrow y=\sqrt{y^2}\)

Ta có  ; \(y^2=2a-2\sqrt{a^2-b}=4\left(\frac{a-\sqrt{a^2-b}}{2}\right)\Rightarrow y=2\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\)

hay \(\sqrt{a+\sqrt{b}}-\sqrt{a-\sqrt{b}}=2\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\)(2)

Trử (1) và (2) theo vế ta được : 

\(\sqrt{a-\sqrt{b}}=\sqrt{\frac{a+\sqrt{a^2-b}}{2}}-\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\)(đpcm)

31 tháng 5 2016

có cách nào ngắn hơn không mấy bn