K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 5 2021

Lời giải:

Gọi số tự nhiên cần tìm là $\overline{ab}$ với $a,b\in\mathbb{N}; a\neq 0; b\leq 9$

Theo bài ra ta có:

\(\left\{\begin{matrix} a+b=12\\ \overline{ba}=\overline{ab}-54\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=12\\ a-b=6\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=9\\ b=3\end{matrix}\right.\)

Vậy số cần tìm là $93$

10 tháng 4 2020

gọi số cần tìm là \(\overline{xy}\)

ta có hệ

\(\hept{\begin{cases}5x-y=12\\\left(10y+x\right)-\left(10x+y\right)=36\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}5x-y=12\\-9x+9y=36\end{cases}=>\hept{\begin{cases}45x-9y=108\\-45x+45y=180\end{cases}=>\hept{\begin{cases}36y=288\\5x-y=12\end{cases}=>\hept{\begin{cases}y=8\\5x=20\end{cases}}}}}\)

\(\Rightarrow\hept{\begin{cases}y=8\\x=4\end{cases}}\)

zậy số cần tìm là 48

4 tháng 2 2021

Gọi số cần tìm là \(\overline{ab}\)

Theo đề bài

\(\overline{ab}-\overline{ba}=10.a+b-10.b-a=9.a-9.b=36\Rightarrow a-b=4\) (1)

Theo đề bài

\(3.a-b=16\) (2)

Từ (1) và (2) ta có hệ phương trình

\(\hept{\begin{cases}a-b=4\\3a-b=16\end{cases}\Rightarrow\hept{\begin{cases}a=6\\b=2\end{cases}}}\) 

10 tháng 5 2020

tui chịu mới lớp 4

17 tháng 5 2020

Gọi chữ số hàng chục là x \(\left(0< x\le9\right)\)

      chữ số hàng dơn vị là y \(\left(0\le y\le9\right)\)

Ta có ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị 13 đơn vị

\(\Rightarrow3x-y=13\left(1\right)\)

 Nếu viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới (có hai chữ số) nhỏ hơn số cũ 9 đơn vị.

\(\Rightarrow xy-yx=9\Leftrightarrow10x+y-10y-x=9\)

                               \(\Leftrightarrow9x-9y=9\)

                               \(\Leftrightarrow x-y=1\left(2\right)\)

Từ (1) và (2) ta có hệ phương trình \(\hept{\begin{cases}3x-y=13\\x-y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x=12\\x-y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=6\left(TM\right)\\y=5\left(TM\right)\end{cases}}\)

Vậy số cần tìm là \(65\)

Học tốt

Gọi số cần tìm là \(\overline{ab}\)(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a\le10\\0\le b\le10\end{matrix}\right.\))

Vì ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị là 6 đơn vị nên ta có phương trình: \(3a-b=6\)(1)

Vì khi viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới lớn hơn số cũ là 36 đơn vị nên ta có phương trình: \(10b+a-\left(10a+b\right)=36\)

\(\Leftrightarrow10b+a-10a-b=36\)

\(\Leftrightarrow-9a+9b=36\)

\(\Leftrightarrow a-b=-4\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}3a-b=6\\a-b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=10\\a-b=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=a+4=5+4=9\end{matrix}\right.\)(thỏa ĐK)

Vậy: Số cần tìm là 59

20 tháng 2 2021

số đấy là 63

gọi số có 2 chữ số đó là: \(\overline{ab}\)

theo đề bài ta có:\(4a-b=17\Rightarrow b=4a-17\)

\(\overline{ab}-\overline{ba}=18\)

\(\Leftrightarrow10a+b-10b-a=18\)

\(\Leftrightarrow9a-9b=18\)

\(\Leftrightarrow a-b=2\)

\(\Leftrightarrow a-\left(4a-17\right)=2\)

\(\Rightarrow-3a=2-17\)

\(\Leftrightarrow-3a=-15\)

\(\Leftrightarrow a=5\)

ta lại có:\(4a-b=17\)

\(4\times5-b=17\)

\(b=3\)

vậy số cần tìm là \(53\)

21 tháng 2 2021

Gọi số cần tìm là \(\overline{ab}\)

  Vì 5 lần chữ số hằng chục lớn hơn chữ số hàng đon vị là 27

Khi đó ta có : 5a - b = 27 

  Vì Nếu viết ngược lại thì được số mới nhỏ hơn số cũa 27 đv

  => \(\overline{ab}-\overline{ba}=27\)

   \(\Leftrightarrow10a+b-10b-a=27\)

    \(\Leftrightarrow9a-9b=27\)

    \(\Leftrightarrow a-b=3\)

Ta có hệ phương trình

  \(\hept{\begin{cases}a-b=3\\5a-b=27\end{cases}}\)

    \(\Leftrightarrow\hept{\begin{cases}a=6\\b=3\end{cases}}\)

  Vậy số cần tìm là 63