Tìm x biết :
a)\(\sqrt{x^2-3}\le x^2-3\)
b) \(\sqrt{x-1}< x+3\)
Help :'<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge1\)
\(3\sqrt[]{x-1}+m\sqrt[]{x+1}=2\sqrt[4]{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow3\sqrt[]{\dfrac{x-1}{x+1}}+m=2\sqrt[4]{\dfrac{x-1}{x+1}}\)
Đặt \(\sqrt[4]{\dfrac{x-1}{x+1}}=t\Rightarrow0\le t< 1\)
\(\Rightarrow3t^2+m=2t\Leftrightarrow-3t^2+2t=m\)
Xét \(f\left(t\right)=-3t^2+2t\) trên \([0;1)\)
\(f'\left(t\right)=-6t+2=0\Rightarrow t=\dfrac{1}{3}\)
\(f\left(0\right)=0;f\left(\dfrac{1}{3}\right)=\dfrac{1}{3};f\left(1\right)=-1\)
\(\Rightarrow-1< f\left(t\right)\le\dfrac{1}{3}\)
\(\Rightarrow-1< m\le\dfrac{1}{3}\)
\(A=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)\(A=\dfrac{2x-6\sqrt{x}+x+\sqrt{x+}3\sqrt{x}+3+3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)\(A=\dfrac{3x-13\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
b: \(\sqrt{x-1}< x+3\)
nên \(\left\{{}\begin{matrix}x-1>=0\\\left(x-1\right)^2< \left(x+3\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=1\\x^2-2x+1-x^2-6x-9< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=1\\-8x-8< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=1\\-8x< 8\end{matrix}\right.\Leftrightarrow x>=1\)
c: \(\Leftrightarrow\left\{{}\begin{matrix}x>=6\\x^2-6x+9>x^2-12x+36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=6\\6x>27\end{matrix}\right.\Leftrightarrow x>=6\)
Bài 2:
\(=\sqrt{\left(x-y\right)^2}=\left|x-y\right|=y-x\)
a) \(2x-\dfrac{x-3}{5}-4x+1\le0\)
\(\Leftrightarrow10x-x+3-20x+5\le0\)
\(\Leftrightarrow-11x+8\le0\)
\(\Leftrightarrow x\ge\dfrac{8}{11}\)
\(\Rightarrow x\in\left(\dfrac{8}{11};+\infty\right)\)
b) \(\sqrt{x^2+2}\le x-1\)
\(\Leftrightarrow x^2+2\le x^2-2x+1\) \(\left(x-1\ge\sqrt{x^2+2}\ge\sqrt{2}\Rightarrow x\ge1+\sqrt{2}\right)\)
\(\Leftrightarrow x\le-\dfrac{1}{2}\)
\(\Rightarrow x\in\varnothing\)
c) \(\sqrt{x-1}+\sqrt{5-x}+\dfrac{1}{x-3}>\dfrac{1}{x-3}\) (\(x\in\left[1;5\right]\backslash\left\{3\right\}\))
\(\Leftrightarrow\sqrt{x-1}+\sqrt{5-x}>0\)
\(\Leftrightarrow4+2\sqrt{\left(x-1\right)\left(5-x\right)}>0\) ( luôn đúng )
vậy \(x\in\left[1;5\right]\backslash\left\{3\right\}\)
a)√x−1=2(x≥1)
\(x-1=4
\)
x=5
b)
\(\sqrt{3-x}=4\) (x≤3)
\(\left(\sqrt{3-x}\right)^2=4^2\)
x-3=16
x=19
a: Ta có: \(\sqrt{x-1}=2\)
\(\Leftrightarrow x-1=4\)
hay x=5
b: Ta có: \(\sqrt{3-x}=4\)
\(\Leftrightarrow3-x=16\)
hay x=-13
c: Ta có: \(2\cdot\sqrt{3-2x}=\dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{3-2x}=\dfrac{1}{4}\)
\(\Leftrightarrow-2x+3=\dfrac{1}{16}\)
\(\Leftrightarrow-2x=-\dfrac{47}{16}\)
hay \(x=\dfrac{47}{32}\)
d: Ta có: \(4-\sqrt{x-1}=\dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{7}{2}\)
\(\Leftrightarrow x-1=\dfrac{49}{4}\)
hay \(x=\dfrac{53}{4}\)
e: Ta có: \(\sqrt{x-1}-3=1\)
\(\Leftrightarrow\sqrt{x-1}=4\)
\(\Leftrightarrow x-1=16\)
hay x=17
f:Ta có: \(\dfrac{1}{2}-2\cdot\sqrt{x+2}=\dfrac{1}{4}\)
\(\Leftrightarrow2\cdot\sqrt{x+2}=\dfrac{1}{4}\)
\(\Leftrightarrow\sqrt{x+2}=\dfrac{1}{8}\)
\(\Leftrightarrow x+2=\dfrac{1}{64}\)
hay \(x=-\dfrac{127}{64}\)
`P=(2\sqrtx+1)/(2sqrtx+3)`
`x>=0=>sqrtx>=0`
`=>2sqrtx+1>=1>0,2sqrtx+3>=3>0`
`=>P>0`
Mặt khác:
`P=1-2/(2sqrtx+3)`
Vì `2sqrtx+3>=3>0`
`=>P<=1-2/3=1/3`
`=>0<P<=1/3`
`=>a=0,b=1/3`
1.
$x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{(x-3)^2}=x+3+|x-3|$
$=x+3+(3-x)=6$
2.
$\sqrt{x^2+4x+4}-\sqrt{x^2}=\sqrt{(x+2)^2}-\sqrt{x^2}$
$=|x+2|-|x|=x+2-(-x)=2x+2$
3.
$\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}$
$=\sqrt{(\sqrt{x^2-1}+1)^2}-\sqrt{(\sqrt{x^2-1}-1)^2}$
$=|\sqrt{x^2-1}+1|+|\sqrt{x^2-1}-1|$
$=\sqrt{x^2-1}+1+|\sqrt{x^2-1}-1|$
4.
$\frac{\sqrt{x^2-2x+1}}{x-1}=\frac{\sqrt{(x-1)^2}}{x-1}$
$=\frac{|x-1|}{x-1}=\frac{x-1}{x-1}=1$
5.
$|x-2|+\frac{\sqrt{x^2-4x+4}}{x-2}=2-x+\frac{\sqrt{(x-2)^2}}{x-2}$
$=2-x+\frac{|x-2|}{x-2}|=2-x+\frac{2-x}{x-2}=2-x+(-1)=1-x$
6.
$2x-1-\frac{\sqrt{x^2-10x+25}}{x-5}=2x-1-\frac{\sqrt{(x-5)^2}}{x-5}$
$=2x-1-\frac{|x-5|}{x-5}$
\(P=A:B=\dfrac{\sqrt{x}+2}{\sqrt{x}}:\dfrac{\sqrt{x}+2}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
P>3/2
=>P-3/2>0
=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{3}{2}>0\)
=>\(\dfrac{2\sqrt{x}+2-3\sqrt{x}}{2\sqrt{x}}>0\)
=>-căn x+2>0
=>-căn x>-2
=>0<x<4