Cho C = \(\frac{5}{4}+\frac{5}{4^2}+\frac{5}{4^3}+...+\frac{5}{4^{99}}.\)Chứng minh rằng C <\(\frac{5}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4C=\(5+\frac{5}{4}+\frac{5}{4^2}+.......+\frac{5}{4^{98}}\)
4C-C=\(5-\frac{5}{4^{99}}\)
3C=\(5-\frac{5}{4^{99}}<5\)
\(\Rightarrow C<\frac{5}{3}\)
Cho C =\(\frac{5}{4}+\frac{5}{4^2}+\frac{5}{4^3}+...+\frac{5}{4^{99}}\)
Chứng minh C <\(\frac{5}{3}\)
\(C=\frac{5}{4}+\frac{5}{4^2}+\frac{5}{4^3}+...+\frac{5}{4^{99}}\)
\(4C=5+\frac{5}{4}+\frac{5}{4^2}+\frac{5}{4^3}+...+\frac{5}{4^{98}}\)
\(4C-C=\left(5+\frac{5}{4}+...+\frac{5}{4^{98}}\right)-\left(\frac{5}{4}+\frac{5}{4^2}+...+\frac{5}{4^{99}}\right)\)
\(3C=5-\frac{5}{4^{99}}\)
\(C=\frac{5-\frac{5}{4^{99}}}{3}\)
\(C=\frac{5}{3}-\frac{5}{4^{99}.3}< C\)
đpcm
Chứng minh rằng \(D=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}< \frac{1}{16}\)
C = \(\frac{5}{4}+\frac{5}{4^2}+\frac{5}{4^3}+...+\frac{5}{4^{99}}\)
= \(5\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{99}}\right)\)
Đặt A = \(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{99}}\)
4A = \(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{99}}\)
4A - A = \(\left(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{99}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{99}}\right)\)
3A = \(1-\frac{1}{4^{99}}< 1\)
=> A < \(\frac{1}{3}\) (1)
Thay (1) vào C ta được:
\(C< 5\cdot\frac{1}{3}=\frac{5}{3}\)(đpcm)
Ta có:\(\frac{5}{4}\)< \(\frac{5}{3}\)Mà C = \(\frac{5}{4}+\frac{5}{4^2}+...+\frac{5}{4^{99}}\)<\(\frac{5}{4}\)
\(\Rightarrow\)C < \(\frac{5}{3}\)