K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

Ta có : \(\left(a+b+c\right)^2=1\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+ac+bc\right)=1\) (1)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow\frac{ab+ac+bc}{abc}=0\)

\(\Rightarrow ab+ac+bc=0\) Thay vào (1) ta được :

\(a^2+b^2+c^2+2.0=1\)

\(\Rightarrow M=a^2+b^2+c^2=1\)

17 tháng 8 2020

a) Áp dụng Cauchy Schwars ta có:

\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi: a = b = c = 1

17 tháng 8 2020

b) \(N=\frac{1}{a}+\frac{4}{b+1}+\frac{9}{c+2}\ge\frac{\left(1+2+3\right)^2}{a+b+c+3}=\frac{36}{6}=6\)

Dấu "=" xảy ra khi: x=y=1

27 tháng 3 2020

Câu hỏi của Hattory Heiji - Toán lớp 8 - Học toán với OnlineMath

17 tháng 4 2020

tvbobnokb' n

iai

  ni;bv nn0

26 tháng 3 2018

Do a+b+c= 0

<=> a+b= -c 

=> (a+b)2= c2 

Tương tự: (c+a)2= b2, (c+b)2= a2   

Ta có: \(A=\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}\)

\(=\frac{1}{b^2+c^2-\left(b+c\right)^2}+\frac{1}{c^2+a^2-\left(c+a\right)^2}+\frac{1}{a^2+b^2-\left(a+b\right)^2}\)

\(=\frac{1}{-2bc}+\frac{1}{-2ca}+\frac{1}{-2ab}\)

\(=\frac{a+b+c}{-2abc}=0\)

18 tháng 2 2020

86 vì ta học lớp 9

18 tháng 2 2020

Ta có: \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)\)

\(=a\left(b^2c^2-b^2-c^2+1\right)+b\left(a^2c^2-a^2-c^2+1\right)\)

\(+c\left(a^2b^2-a^2-b^2+1\right)\)

\(=ab^2c^2-ab^2-ac^2+a+ba^2c^2-a^2b-bc^2+b\)

\(+ca^2b^2-a^2c-b^2c+c\)

\(=\left(ab^2c^2+ba^2c^2+ca^2b^2\right)+\left(a+b+c\right)\)

\(-\left(ab^2+ac^2+a^2b+bc^2+a^2c+b^2c\right)\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)\)\(-\left[ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right]\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left[ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\right]\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(=abc\left(bc+ac+ab\right)+abc+3abc\)\(-abc\left(ab+bc+ca\right)=4abc\)

Vậy \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)=4abc\)(đpcm)

NV
14 tháng 1 2024

Ta có:

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}\ge\dfrac{4}{a+2b+c}\ge\dfrac{4}{\dfrac{a^2+1}{2}+b^2+1+\dfrac{c^2+1}{2}}=\dfrac{8}{b^2+7}\)

Tương tự

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}\ge\dfrac{8}{a^2+7}\)

\(\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge\dfrac{8}{c^2+7}\)

Cộng vế:

\(2\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{8}{a^2+7}+\dfrac{8}{b^2+7}+\dfrac{8}{c^2+7}\)

\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{4}{a^2+7}+\dfrac{4}{b^2+7}+\dfrac{4}{c^2+7}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

9 tháng 1 2021

Thay \(a=-\left(b+c\right)\) ; \(a+c=-b\) và \(a+b=-c\) vào điều kiện thứ 2 ta có 

\(\left(b+c\right)^2=2\left(-b+1\right)\left(-c-1\right)\)

 <=> \(b^2+c^2+2bc=2bc+2b-2c-2\)

<=> \(\left(b-1\right)^2+\left(c+1\right)^2=0\) <=> \(\left\{{}\begin{matrix}b=1\\c=-1\end{matrix}\right.\)

suy ra: a=0. Vậy A = a2 + b2 + c2 = 2

 

26 tháng 12 2021

bạn ơi tại sao (b−1)^2+(c+1)^2=0??

11 tháng 3 2018

Ta có

D   =   a ( b 2   +   c 2 )   –   b ( c 2   +   a 2 )   +   c ( a 2   +   b 2 )   –   2 a b c     =   a b 2   +   a c 2   –   b c 2   –   b a 2   +   c a 2   +   c b 2   –   2 a b c     =   ( a b 2   –   a 2 b )   +   ( a c 2   –   b c 2 )   +   ( a 2 c   –   2 a b c   +   b 2 c )     =   a b ( b   –   a )   +   c 2 ( a   –   b )   +   c ( a 2   –   2 a b   +   b 2 )     =   - a b ( a   –   b )   +   c 2 ( a   –   b )   +   c ( a   –   b ) 2     =   ( a   –   b ) ( - a b   +   c 2   +   c ( a   –   b ) )     =   ( a   –   b ) ( - a b   +   c 2   +   a c   –   b c )     =   ( a   –   b ) [ ( - a b   +   a c )   +   ( c 2   –   b c ) ]

= (a – b)[a(c – b) + c(c – b)]

= (a – b)(a + c)(c – b)

Với a = 99; b = -9; c = 1, ta có

D = (99 - (-9))(99 + 1) (1 - (-9)) = 108.100.10 = 108000

Đáp án cần chọn là: B

10 tháng 6 2021

mới ăn miếng cơm cà ngon nhức nách luôn ai thèm cơm cà không điểm danh nào

25 tháng 10 2021

\(a+b+c=abc\Leftrightarrow\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}=1\Leftrightarrow\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}=2\)

Mà \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=4\\ \Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2=4\\ \Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)