Thực hiện phép tính :( triển khai bằng hằng đẳng thức )
( 2y + 3x2)3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y\right)^3=x^3+3x^2y+3xy^2-y^3\)
\(\left(x-y\right)^3=x^3-3x^2y+3xy^2-y^3\)
\(\left(2y-3\right)^3=8y^3-36y^2+54y-27\)
a: Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3\)
\(=6x^2y+2y^3\)
5:
a: (2x-5)(2x+5)=4x^2-25
b: (3x-5y)(3x+5y)=9x^2-25y^2
c: (3x+7y)(3x-7y)=9x^2-49y^2
d: (2x-1)(2x+1)=4x^2-1
4:
a: 2003*2005=(2004-1)(2004+1)=2004^2-1<2004^2
b: 8(7^2+1)(7^4+1)(7^8+1)
=1/6*(7-1)(7+1)(7^2+1)(7^4+1)(7^8+1)
=1/6(7^2-1)(7^2+1)(7^4+1)(7^8+1)
=1/6(7^16-1)<7^16-1
5:
a: (2x-5)(2x+5)=4x^2-25
b: (3x-5y)(3x+5y)=9x^2-25y^2
c: (3x+7y)(3x-7y)=9x^2-49y^2
d: (2x-1)(2x+1)=4x^2-1
mik chỉ biết bài 5 thôi !
\(1,=-\left(y^2+12y+36\right)=-y^2-12y-36\)
\(2,=-\left(16-8y+y^2\right)=-16+8y-y^2\)
\(3,=-\left(\dfrac{4}{9}+\dfrac{4}{3}x+x^2\right)=-\dfrac{4}{9}-\dfrac{4}{3}x-x^2\)
\(4,=-\left(x^2-3x+\dfrac{9}{4}\right)=-x^2+3x-\dfrac{9}{4}\)
\(5,-\left(2+3y\right)^2=-\left(4+12y+9y^2\right)=-4-12y-9y^2\)
.... mấy ý còn lại bn tự lm nhé, tương tự thhooi
1) \(-\left(y+6\right)^2=-y^2-12y-36\)
2) \(-\left(4-y\right)^2=-y^2+8y-16\)
3) \(-\left(x+\dfrac{2}{3}\right)^2=-x^2-\dfrac{4}{3}x-\dfrac{4}{9}\)
4) \(-\left(x-\dfrac{3}{2}\right)^2=-x^2+3x-\dfrac{9}{4}\)
5) \(-\left(3y+2\right)^2=-9y^2-12y-4\)
6) \(-\left(2y-3\right)^2=-4y^2+12y-9\)
7) \(-\left(5x+2y\right)^2=-25x^2-20xy-4y^2\)
8) \(-\left(2x-\dfrac{3}{2}\right)^2=-4x^2+6x-\dfrac{9}{4}\)
\(-\left(3+x\right)^2=-\left(3^2+2\cdot3\cdot x+x^2\right)\)
\(=-\left(9+6x+x^2\right)\)
\(=-x^2-6x-9\)
`@` `\text {Ans}`
`\downarrow`
`(2y + 3x^2)^3`
`= (2y)^3 + 3. (2y)^2 . 3x^2 + 3. 2y . (3x^2)^2 + (3x^2)^3`
`= 8y^3 + 3. 4y^2 . 3x^2 + 6y . 9x^4 + 27x^6`
`= 8y^3 + 36x^2y^2 +54x^4y + 27x^6`
___
CT:
`(A+B)^3 = A^3 + 3A^2B + 3AB^2 + B^3`
Để triển khai biểu thức (2y + 3x^2)^3 bằng hằng đẳng thức, ta sử dụng công thức nhị thức Newton:
(2y + 3x^2)^3 = C(3, 0)(2y)^3(3x^2)^0 + C(3, 1)(2y)^2(3x^2)^1 + C(3, 2)(2y)^1(3x^2)^2 + C(3, 3)(2y)^0(3x^2)^3
Trong đó:
C(n, k) là tổ hợp chập k của n (C(n, k) = n! / (k!(n-k)!))
^ là dấu mũ
() là dấu ngoặc
Áp dụng công thức, ta có:
(2y + 3x^2)^3 = C(3, 0)(2y)^3(3x^2)^0 + C(3, 1)(2y)^2(3x^2)^1 + C(3, 2)(2y)^1(3x^2)^2 + C(3, 3)(2y)^0(3x^2)^3
= 1(2y)^3 + 3(2y)^2(3x^2) + 3(2y)(3x^2)^2 + 1(3x^2)^3
= 8y^3 + 12y^2(3x^2) + 6y(9x^4) + 27x^6
= 8y^3 + 36y^2x^2 + 54yx^4 + 27x^6
Vậy biểu thức (2y + 3x^2)^3 sau khi triển khai bằng hằng đẳng thức là 8y^3 + 36y^2x^2 + 54yx^4 + 27x^6.