K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

C1:

Tổng các chữ số là:

4+5+9+9+1+8+0=36 chia hết cho 9

=>45+99+180 chia hết cho 9

C2:

45\(⋮\)9

99\(⋮\) 9

180\(⋮\) 9

=>45+99+180\(⋮\) 9

23 tháng 6 2017

Ta có: 45 chia hết cho 9

99 chia hết cho 9

180 chia hết cho 9

=> 45 + 99 + 180 chia hết cho 9

19 tháng 12 2018

Sơ đồ con đường

Lời giải chi tiết

 

Áp dụng tính chất chia hết của một tổng ta có:

    45 ⋮ 9 99 ⋮ 9 180 ⋮ 9 ⇒ ( 45 + 99 + 180 ) ⋮ 9 = >   D ⋮ 9

23 tháng 3 2017

25 tháng 12 2019

`A + B + C = x^2yz + xy^2z + zy^2x = xyz(x+y+z) = xyz`.

11 tháng 5 2022

\(A+B+C=x^2yz+xy^2z+xyz^2=xyz\left(x+y+z\right)=xyz\)

Vậy ta có đpcm 

16 tháng 3

a;

A = 109 + 108 + 107 

A = 107.(102 + 10 + 1)

A = 106.2.5.(100 + 10 + 1)

A = 106.2.5.111

A = 106.2.555 ⋮ 555 (đpcm)

16 tháng 3

b;

B = 817 - 279 - 919

B = 914 - 39.99 - 919

B = 914 - 3.38.99 - 919

B = 914 - 3.94.99 - 919

B = 914 - 3.913 - 919

B = 913.(9 - 3 - 96)

B = 913.(9 - 3 - \(\overline{..1}\))

B = 913.(6 - \(\overline{..1}\))

B = 913.\(\overline{..5}\)

B ⋮ 9; B ⋮ 5

\(\in\) BC(9; 5)  = 9.5 = 45

B ⋮ 45 (đpcm)

 

21 tháng 8 2019

a) Có: \(3+3^2+3^3+3^4+...+3^{99}\\ =\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\\ =\left(3+3^2+3^3\right)+3^3\left(3+3^2+3^3\right)+...+3^{97}\left(3+3^2+3^3\right)\\ =39+3^3\cdot39+...+3^{97}\cdot39\\ =13\cdot3+3^3\cdot13\cdot3+...+3^{97}\cdot13\cdot3\\ =13\left(3+3^4+...+3^{98}\right)⋮13\left(đpcm\right)\)

b) Có: \(81^7-27^9-9^{13}\\ =\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\\ =3^{28}-3^{27}-3^{26}\\ =3^{26}\left(3^2-3-1\right)\\ =3^{24}\cdot\left(3^2\cdot5\right)\\ =3^{24}\cdot45⋮45\left(đpcm\right)\)

c) Có: \(24^{54}\cdot54^{24}\cdot2^{10}\\ =\left(2^3\cdot3\right)^{54}\cdot\left(2\cdot3^3\right)^{24}\cdot2^{10}\\ =2^{162}\cdot3^{54}\cdot2^{24}\cdot3^{72}\cdot2^{10}\\ =2^{196}\cdot3^{126}\\ =2^7\cdot\left(2^{189}\cdot3^{126}\right)\\ =2^7\cdot\left[\left(2^3\right)^{63}\cdot\left(3^2\right)^{63}\right]\\ =2^7\left(8^{63}\cdot9^{63}\right)\\ =2^7\cdot72^{63}⋮72^{63}\left(đpcm\right)\)

21 tháng 8 2019

a) ta có: 3 + 32 + 33 + 34 + ... + 399

= (3 + 32 + 33) + (34 + 35 +36) + ... + (397 + 398 + 399)

= 3(1 + 3 + 32) + 34(1 + 3 + 3) + ... + 396(1 + 3 + 3)

= 3.13 + 34.13 + ... + 396.13

= 13(3 + 34 + ... + 396) ⋮ 13

vậy (3 + 32 + 33 + 34 + ... + 399) ⋮ 13

b) ta có: 817 - 279 - 913

= (34)7 - (33)9 - (32)13

= 328 - 327 - 326

= 326(32 - 3 - 1)

= 326 . 5 = 324 (9.5) = 324 . 45 ⋮ 45

Vậy (817 - 279 - 913) ⋮ 45

c) ta có: 2454.5424.210

= (23.3)54 . (2.33)24 . 210

= 2162 . 354 . 224 . 372 . 210

= 2196 . 3126

= (2193.3124).(23.32)

= (2193.3124).72 ⋮ 72

vậy (2454.5424.210) ⋮ 72