Bài 1: Phân tích đa thức thành nhân tử:
a) 3(x-y)^2+9y(y-x)^2
b) 3(x-y)^2+9y(y-x)
giúp e với ạ, em cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\left(x-2y\right)\left(x+2y\right)-2\left(x-2y\right)=\left(x-2y\right)\left(x+2y-2\right)\\ b,=\left(x^2+3y\right)^2-1=\left(x^2+3y-1\right)\left(x^2+3y+1\right)\)
a: \(=a\left(y^2-2yz+z^2\right)\)
\(=a\left(y-z\right)^2\)
b: \(=\left(x^2+6xy+9y^2\right)-16\)
=(x+3y)^2-16
=(x+3y+4)(x+3y-4)
c: \(=7\left(a-b\right)+\left(a-b\right)\left(a+b\right)\)
=(a-b)(7+a+b)
d: \(36x^4-13x^2\)
=x^2*36x^2-x^2*13
=x^2(36x^2-13)
f: x^2-2xy+y^2-49
=(x-y)^2-49
=(x-y-7)(x-y+7)
e: 2x^3-18x
=2x(x^2-9)
=2x(x-3)(x+3)
g: 2x+2y-x^2-xy
=2(x+y)-x(x+y)
=(x+y)(2-x)
h: (x^2+3)^2+16
=x^4+6x^2+25
=x^4+10x^2+25-4x^2
=(x^2+5)^2-4x^2
=(x^2-2x+5)(x^2+2x+5)
a, \(6x^3y^2.\left(2-x\right)+9x^2y^2\left(x-2\right)\)
\(=6x^3y^2.\left(2-x\right)-9x^2y^2\left(2-x\right)\)
\(=y^2.\left(2-x\right)\left(6x^3-9x^2\right)\)
\(=3x^2y^2.\left(2-x\right)\left(2x-3\right)\)
b. \(x^2-4x+4y-y^2\)
\(=\left(x^2-y^2\right)-\left(4x-4y\right)\)
\(=\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-4\right)\)
a, \(=\left(xy+1+x-y\right)\left(xy+1-x+y\right)\)
b, \(\left(x+y-x+y\right)[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2]\)
\(=2y[x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2]\)
\(=2y\left(3x^2+y^2\right)\)
c,\(=3\left(x+1\right)^2\left(x^2-x+1\right)y^2\)
câu a, b áp dụng hằng đẳng thức rồi làm nha
c) 3x4y2 + 3x3y2 + 3xy2 + 3y2
= ( 3x4y2 + 3x3y2 ) + ( 3xy2 + 3y2 )
= 3x3y2 ( x + 1) + 3y2 ( x + 1 )
= ( 3x3y2 + 3y2 ) ( x + 1 )
= 3y2 ( x3 + 1 ) ( x + 1 )
= 3y2 ( x + 1 ) ( x2 - x + 1 ) ( x + 1 )
= 3y2 ( x + 1 )2 ( x2 - x + 1 )
a) Ta có: \(4\left(x-2\right)^2+xy-2y\)
\(=4\left(x-2\right)^2+y\left(x-2\right)\)
\(=\left(x-2\right)\left(4x-8+y\right)\)
b) Ta có: \(x\left(x-y\right)^3-y\left(y-x\right)^2-y^2\left(x-y\right)\)
\(=x\left(x-y\right)^3-y\left(x-y\right)^2-y^2\left(x-y\right)\)
\(=\left(x-y\right)\left[x\left(x-y\right)^2-y\left(x-y\right)-y^2\right]\)
\(a.3x^2-3y^2-2\left(x-y\right)^2\\ =3\left(x^2-y^2\right)-2\left(x-y\right)^2\\ =3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\\ =\left(x-y\right)\left[3\left(x+y\right)-2.\left(x-y\right)\right]=\left(x-y\right)\left(x+5y\right)\\ b.x^2-y^2-2x-2y\\ =\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\\ =\left(x+y\right)\left(x-y-2\right)\\ c.\left(x-1\right)\left(2x+1\right)+3\left(x-1\right)\left(x+2\right)\left(2x+1\right)\\ =\left(x-1\right)\left(2x+1\right)\left[1+3\left(x+2\right)\right]\\ =\left(x-1\right)\left(2x+1\right)\left(3x+7\right)\\ d.\left(x-5\right)^2+\left(x+5\right)\left(x-5\right)-\left(5-x\right)\left(2x+1\right)\\ =\left(x-5\right)^2+\left(x+5\right)\left(x-5\right)+\left(x-5\right)\left(2x+1\right)\\ =\left(x-5\right)\left[\left(x-5\right)+\left(x+5\right)+\left(2x+1\right)\right]\\ =\left(x-5\right)\left(4x+1\right)\)
b: \(\left(x^2+4\right)^2-16x^2\)
\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)
\(=\left(x-2\right)^2\cdot\left(x+2\right)^2\)
c: \(x^5-x^4+x^3-x^2\)
\(=x^4\left(x-1\right)+x^2\left(x-1\right)\)
\(=x^2\left(x-1\right)\left(x^2+1\right)\)
Lời giải:
a. Bạn xem lại đề
b. \((x^2+4)^2-16x^2=(x^2+4)^2-(4x)^2=(x^2+4-4x)(x^2+4+4x)\)
\(=(x-2)^2(x+2)^2\)
c.
\(x^5-x^4+x^3-x^2=x^4(x-1)+x^2(x-1)=(x^4+x^2)(x-1)\)
\(=x^2(x^2+1)(x-1)\)
a) \(3\left(x-y\right)^2+9y\left(y-x\right)^2\)
\(=3\left(x-y\right)^2+9y\left(x-y\right)^2\)
\(=\left(x-y\right)^2\left(3-9y\right)\)
\(=3\left(x-y\right)^2\left(3y+1\right)\)
b) \(3\left(x-y\right)^2+9y\left(y-x\right)\)
\(=3\left(y-x\right)^2+9y\left(y-x\right)\)
\(=\left(y-x\right)\left[3\left(y-x\right)+9y\right]\)
\(=3\left(y-x\right)\left(y-x+3y\right)\)
\(=3\left(y-x\right)\left(4y-x\right)\)
a: =3(x-y)^2+9y(x-y)^2
=(x-y)^2(3+9y)
=(x-y)^2*3*(y+3)
b: =3(x-y)^2-9y(x-y)
=3(x-y)(x-y-9y)
=3(x-y)(x-10y)