Cho tam giác ABC trung tuyến AM , trên AC lấy E và F sao cho AE = EF = FC , BE cắt AM tại O
a, Tứ giác OEFM là hình gì ? Vì sao ?
b, CM : BO = 3 . OE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔBEC có
M là trung điểm của BC(gt)
F là trung điểm của EC(gt)
Do đó: MF là đường trung bình của ΔBEC(Định nghĩa đường trung bình của tam giác)
Suy ra: MF//BE và \(MF=\dfrac{BE}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay MF//OE
Xét tứ giác OEFM có MF//OE(cmt)
nên OEFM là hình thang(Dấu hiệu nhận biết hình thang)
b) Xét ΔAMF có
E là trung điểm của AF(gt)
EO//MF(cmt)
Do đó: O là trung điểm của AM(Định lí 1 về đường trung bình của tam giác)
Xét ΔAMF có
O là trung điểm của AM(cmt)
E là trung điểm của AF(gt)
Do đó: OE là đường trung bình của ΔAMF(Định nghĩa đường trung bình của tam giác)
Suy ra: \(OE=\dfrac{MF}{2}\)(Định lí 2 về đường trung bình của tam giác)
\(\Leftrightarrow MF=2OE\)
\(\Leftrightarrow\dfrac{BE}{2}=2\cdot OE\)
hay BE=4OE
\(\Leftrightarrow BO=BE-OE=4OE-OE=3OE\)(đpcm)
a: Xét ΔANF có
M là trung điểm của AN
E là trung điểm của AF
Do đó: ME là đường trung bình của ΔANF
Suy ra: ME//NF
hay MEFN là hình thang
b: Xét ΔBEM có
N là trung điểm của BM
NI//ME
Do đó: I là trung điểm của BE
hay BI=IE
Kẻ đoạn thẳng MF.
Do AE = EF nên E là trung điểm AF.
Trong tam giác ABC có AM là đường trung tuyến nên M là trung điểm của BC.
Vì vậy: MF là đường trung bình của tam giác BEC.
Suy ra: MF//BE.
Trong tam giác AMF có E là trung điểm của AF, BE//MF nên BE đi qua trung điểm của AM hay N là trung điểm của AM.
Vì vậy \(\overrightarrow{NA}\) và \(\overrightarrow{NM}\) là hai véc tơ đối nhau.
1/. Xét Tứ giác AEHF, có:
E = 90 (EH vuong góc AB)
F = 90 (HF vuong AC)
A = 90 (ABC vuong tai A)
=> AEHF là hcn
2/. Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM =1/2BC => AM =MB = MC = 2,5 cm
=> BC = 2,5 x2 = 5cm
Áp dụng định lý Py-ta-go vào tam giác vuông ABC, có:
AB^2 +AC^2 =BC^2
9+AC^2 = 25
=> AC^2 = 25-9 = 16
=> AC =4cm
Diện tích tam giác ABC: 1/2AB.AC = 1/2(.3.4 )= 6cm^2
3/. Gọi K là giao điểm của EF và AM, J là giao điểm của EF và AH
CM: góc AEK = góc ABC
Vì J là giao điểm của 2 đường chéo trong hcn AEHF => ẠJ = JH = Ẹ = JF
=> tam giác EJA cân tại J => AEJ = EAH (1)
Xét tam giác vuông ABH => EAH +ABC = 90
Xét tam giác vuông ABC=> ABC + ACB = 90
=> EAH = ACB và (1) => ACB = AEJ (2)
Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM = BM = MC
=> tam giác ABM cân tại M => EAK = ABC (3)
Xét tam giác EAK: có: AEJ + EAK = ACB + ABC = 90 ( do 2 và 3)
=> tam giác AEK vuong tại K
Hay AM vuông EF
4/. Vì A đới xứng với I qua BC => AI vuông góc với BC . Mà AH vuong với BC => A. H , I thẳng hàng . hay H là trung điểm của AI
Xét tam giác AID, có:
H là trung ddierm của AI, M là trung điểm của AD
=> HM là đường trung bình của tam giác AID => HM // ID
=> tứ giác BIDC là hình thang
Xét tam giác ABI , có: BH vừa là đường cao vừa là đường trung tuyến => ABI cân tại B => IBH = ABH (BH là đường phân giác) (4)
Xét tứ giác ABCD có:
M là trung điểm BC
M là trung điểm AD
M = BC giao AD
=> ABCD là hình bình hành và A = 90 => ABCD là hình chữ nhật
=> DCB = ABC (DC // AB và solle trong) (5)
Từ 4 và 5 => BCD = IBC (= ABC) => Hình thang BIDC là hình thang cân
1/. Xét Tứ giác AEHF, có:
E = 90 (EH vuong góc AB)
F = 90 (HF vuong AC)
A = 90 (ABC vuong tai A)
=> AEHF là hcn
2/. Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM =1/2BC => AM =MB = MC = 2,5 cm
=> BC = 2,5 x2 = 5cm
Áp dụng định lý Py-ta-go vào tam giác vuông ABC, có:
AB^2 +AC^2 =BC^2
9+AC^2 = 25
=> AC^2 = 25-9 = 16
=> AC =4cm
Diện tích tam giác ABC: 1/2AB.AC = 1/2(.3.4 )= 6cm^2
3/.
a: Xét ΔBEC có CM/CB=CF/CE
nên FM//BE
=>FM//OE
=>OEFM là hình thang
b: Xét ΔAMF có EO//MF
nên EO/MF=AE/AF=1/2
=>EO=1/2MF
mà MF=1/2BE
nên EO=1/2*1/2*BE=1/4*BE
=>BE=4*EO
=>BO=3OE
Bạn ơi phần b là BO=3. OE mà ?