Tìm x
4 x - 24: 4 = 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a,x^4+5x^2+9\\=(x^4+6x^2+9)-x^2\\=[(x^2)^2+2\cdot x^2\cdot3+3^2]-x^2\\=(x^2+3)^2-x^2\\=(x^2+3-x)(x^2+3+x)\)
\(b,x^4+3x^2+4\\=(x^4+4x^2+4)-x^2\\=[(x^2)^2+2\cdot x^2\cdot2+2^2]-x^2\\=(x^2+2)^2-x^2\\=(x^2+2-x)(x^2+2+x)\)
\(c,2x^4-x^2-1\\=2x^4-2x^2+x^2-1\\=2x^2(x^2-1)+(x^2-1)\\=(x^2-1)(2x^2+1)\\=(x-1)(x+1)(2x^2+1)\)
Bài 2:
\(a,\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=120\)
\(\Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\cdot\left[\left(x+2\right)\left(x+3\right)\right]=120\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=120\) (1)
Đặt \(x^2+5x+5=y\), khi đó (1) trở thành:
\(\left(y-1\right)\left(y+1\right)=120\)
\(\Leftrightarrow y^2-1=120\)
\(\Leftrightarrow y^2=121\)
\(\Leftrightarrow\left[{}\begin{matrix}y=11\\y=-11\end{matrix}\right.\)
+, TH1: \(y=11\Leftrightarrow x^2+5x+5=11\)
\(\Leftrightarrow x^2+5x-6=0\)
\(\Leftrightarrow x^2-x+6x-6=0\)
\(\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-6\end{matrix}\right.\left(\text{nhận}\right)\)
+, TH2: \(y=-11\Leftrightarrow x^2+5x+5=-11\)
\(\Leftrightarrow x^2+5x+16=0\)
\(\Leftrightarrow\left[x^2+2\cdot x\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]-\dfrac{25}{4}+16=0\)
\(\Leftrightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)
Ta thấy: \(\left(x+\dfrac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}\ge\dfrac{39}{4}>0\forall x\)
Mà \(\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)
\(\Rightarrow\) loại
Vậy \(x\in\left\{1;-6\right\}\).
\(b,\) Đề thiếu vế phải rồi bạn.
d: Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
\(\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(a.\dfrac{6}{5}=\dfrac{18}{x}\Rightarrow x=\dfrac{18\cdot5}{6}=15\\ \text{Vậy}\text{ }x=15.\)
\(b.\dfrac{3}{4}=\dfrac{-21}{x}\Rightarrow x=\dfrac{-21\cdot4}{3}=28\\ \text{ }\text{ }\text{ }\text{ }\text{Vậy }x=28.\)
\(c.\dfrac{x}{4}=\dfrac{21}{28}\Rightarrow x=\dfrac{21\cdot4}{28}=3\\ \text{Vậy }x=3.\)
\(d.\dfrac{-8}{2x}=\dfrac{3}{-9}\Rightarrow x=\dfrac{-8\cdot\left(-9\right)}{3}:2=12\\ \text{Vậy }x=12.\)
\(e.\dfrac{-4}{11}=\dfrac{x}{22}=\dfrac{40}{z}\\ \Rightarrow x=\dfrac{-4\cdot22}{11}=-8\\ \Rightarrow z=\dfrac{22\cdot40}{-8}=-110\\ \text{Vậy }x=-8;z=-110.\)
\(f.\dfrac{-3}{4}=\dfrac{x}{20}=\dfrac{21}{y}\\ \Rightarrow x=\dfrac{-3\cdot20}{4}=-15\\ \Rightarrow y=\dfrac{21\cdot20}{-15}=-28\\ \text{Vậy }x=-15;y=-28.\)
\(g.\dfrac{-4}{8}=\dfrac{x}{-10}=\dfrac{-7}{y}=\dfrac{z}{-24}\\ \Rightarrow x=\dfrac{-4\cdot\left(-10\right)}{8}=5\\ \Rightarrow y=\dfrac{-7\cdot\left(-10\right)}{5}=14\\ \Rightarrow z=\dfrac{-7\cdot\left(-24\right)}{14}=12\\ \text{Vậy }x=5;y=14;z=12.\)
\(h.\dfrac{x}{4}=\dfrac{9}{x}\\ \Rightarrow x\cdot x=9\cdot4\\ \Rightarrow x\cdot x=36\\ \Rightarrow x\cdot x=6\cdot6\\ \text{Vậy }\text{cả hai }x=6.\)
a: \(x^4+4=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
b: \(x^8+x^7+1\)
\(=x^8+x^7+x^6-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
c: \(x^8+x^4+1\)
\(=\left(x^8+2x^4+1\right)-x^4\)
\(=\left(x^4-x^2+1\right)\cdot\left(x^4+x^2+1\right)\)
\(=\left(x^4-x^2+1\right)\left(x^2+1-x\right)\left(x^2+1+x\right)\)
\(3^x\cdot8=24\Rightarrow3^x=3\Rightarrow3^x=3^1\Rightarrow x=1\)
\(5^x+1=25\Rightarrow5^x=24\Rightarrow5^x=5^{1,9746...}\Rightarrow x=1,9746...\)
=> 4x - 16:4= 8 hay 4x-4=8
=> 4x= 8+4=12 hay x= 12:4=3;
Vậy x=3;;;; làm ơn ủng hộ nha