K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{9}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{2}{3}.....\frac{8}{9}\)

\(\Rightarrow A=\frac{1.2.3.....8}{2.3.4.....9}=\frac{1}{9}\)

a: 14/5-7/5=7/5

b: 7/8-1/3+5/4

=21/24-8/24+30/24

=43/24

c; =7/6+5/6+2/15+13/15

=2+1

=3

d: =4*5/3*11=20/33

e: =2/9*1/6*1/4=2/9*1/24=1/108

2:
a: \(=\dfrac{3}{9}\cdot\dfrac{4}{4}\cdot\dfrac{5}{5}\cdot\dfrac{6}{6}\cdot\dfrac{7}{7}=\dfrac{1}{3}\)

b: \(=\dfrac{1}{6}\left(\dfrac{22}{3}-\dfrac{2}{3}\right)=\dfrac{10}{3}\cdot\dfrac{1}{6}=\dfrac{10}{18}=\dfrac{5}{9}\)

c; \(=\dfrac{1}{3}\left(9-\dfrac{2}{5}-\dfrac{3}{5}\right)=\dfrac{8}{3}\)

29 tháng 6 2023

14/5-7/5=7/5 

7/8-1/3+5/4=13/24+5/4=43/24 

7/6+2/15+5/6+13/15=13/10+5/6+13/15=32/15+13/15=3

4/3*5/11=20/35

2/9:6*1/4=1/27*1/4=1/108

6 tháng 7 2019

câu 5 bị thiếu : 5. A=6+16+30+48+...+19600+19998 

15 tháng 6 2023

\(a,\dfrac{3}{5}+\dfrac{3}{5\cdot9}+\dfrac{3}{9\cdot13}+....+\dfrac{3}{97\cdot101}\)

\(=\dfrac{3}{4}\cdot\left(\dfrac{4}{5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+....+\dfrac{4}{97\cdot101}\right)\)

\(=\dfrac{3}{4}\cdot\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+....+\dfrac{1}{97}-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{4}\cdot\left(1-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{4}\cdot\dfrac{100}{101}\)

\(=\dfrac{75}{101}\)

\(b,\left(1+\dfrac{1}{2}\right)\cdot\left(1+\dfrac{1}{3}\right)\cdot\left(1+\dfrac{1}{4}\right)\cdot....\cdot\left(1+\dfrac{1}{99}\right)\)

\(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot....\cdot\dfrac{100}{99}\)

\(=\dfrac{100}{2}=50\)

15 tháng 6 2023

Tính nhanh:

a) \(\dfrac{3}{5}+\dfrac{3}{5.9}+\dfrac{3}{9.13}+...+\dfrac{3}{97.101}\)

\(\dfrac{3}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{97}-\dfrac{1}{101}\right)\)

\(\dfrac{3}{4}\left(1-\dfrac{1}{101}\right)\)

\(\dfrac{3}{4}\times\dfrac{100}{101}\)

\(\dfrac{75}{101}\)

b) \(\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{4}\right)...\left(\dfrac{1}{98}+1\right)\left(\dfrac{1}{99}+1\right)\)

\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{99}{98}.\dfrac{100}{99}\)

\(=\dfrac{3.4.5...99.100}{2.3.4...98.99}\)

\(=\dfrac{100}{2}\)

\(=50\)