K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2017

a) Đưa về hằng đẳng thức số 3 , ta có :

\(\left(x^2+1\right)^2-4x^2\)

\(=\left(x^2+1\right)^2-\left(2x\right)^2\)

\(=\left(x^2-1-2x\right)\left(x^2-1+2x\right)\)

b) \(x^2-y^2+2yz-z^2\)

\(=x^2-\left(y^2-2yz+z^2\right)\)

\(=x^2-\left(y-z\right)^2\)

Tương tự như câu a , áp dụng hằng số 3 , ta có :

\(=x^2-\left(y-z\right)^2=\left(x-y+z\right)\left(x+y-z\right)\)

22 tháng 6 2017

1) \(\left(x^2+1\right)^2-4x^2\)

\(=\left(x^2+1\right)^2-\left(2x\right)^2\)

\(=\left(x^2+2x+1\right)\left(x^2-2x+1\right)\)

\(=\left(x+1\right)^2\left(x-1\right)^2\)

\(=\left(x^2-1\right)\left(x^2-1\right)\)

\(=\left(x^2-1\right)^2\)

29 tháng 6 2017

a)= \(\frac{\left(2x+3\right)^2}{2x^2+3x-4x-6}\)

=\(\frac{\left(2x+3\right)^2}{x\left(2x+3\right)-2\left(2x+3\right)}\)

\(\frac{\left(2x+3\right)^2}{\left(x-2\right)\left(2x+3\right)}\)

=\(\frac{2x+3}{x-2}\)

29 tháng 6 2017

b) = \(\frac{3\left|x-4\right|}{3x^2-3x-1296}\)

\(\frac{3\left|x-4\right|}{3\left(x^2-x-432\right)}\)

=\(\frac{\left|x-4\right|}{x^2-x-432}\)

13 tháng 11 2016

a) x2 - y2 - z2 - 2yz

=x2 - (y2 + 2yz + z2)

=x2 - (y + z)2

=(x - y - z)(x + y + z)

b)4x2(x - 6) + 9y2(6 - x)

=4x2(x - 6) - 9y2(x - 6)

=(x - 6)(4x2 - 9y2)

=(x - 6)(2x - 3y)(2x + 3y)

 

13 tháng 11 2016

c)6xy + 5x - 5y - 3x2 - 3y2

=(-3x2 + 6xy - 3y2) + (5x - 5y)

= -3(x2 - 2xy +y2) + 5(x - y)

= -3(x - y)2 + 5(x - y)

=(x - y)(-3x + 3y + 5)

29 tháng 11 2023

bài 1: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

\(\dfrac{x}{x+2}-\dfrac{x}{x-2}\)

\(=\dfrac{x\left(x-2\right)-x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2-2x-x^2-2x}{\left(x-2\right)\left(x+2\right)}=-\dfrac{4x}{x^2-4}\)

Bài 2:

1: \(x^2y^2-8-1\)

\(=x^2y^2-9\)

\(=\left(xy-3\right)\left(xy+3\right)\)

2: \(x^3y-2x^2y+xy-xy^3\)

\(=xy\cdot x^2-xy\cdot2x+xy\cdot1-xy\cdot y^2\)

\(=xy\left(x^2-2x+1-y^2\right)\)

\(=xy\left[\left(x-1\right)^2-y^2\right]\)

\(=xy\left(x-1-y\right)\left(x-1+y\right)\)

3: \(x^3-2x^2y+xy^2\)

\(=x\cdot x^2-x\cdot2xy+x\cdot y^2\)

\(=x\left(x^2-2xy+y^2\right)=x\left(x-y\right)^2\)

4: \(x^2+2x-y^2+1\)

\(=\left(x^2+2x+1\right)-y^2\)

\(=\left(x+1\right)^2-y^2\)

\(=\left(x+1+y\right)\left(x+1-y\right)\)

5: \(x^2+2x-4y^2+1\)

\(=\left(x^2+2x+1\right)-4y^2\)

\(=\left(x+1\right)^2-4y^2\)

\(=\left(x+1-2y\right)\left(x+1+2y\right)\)

6: \(x^2-6x-y^2+9\)

\(=\left(x^2-6x+9\right)-y^2\)

\(=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)

a, =x4(x+2)-x3(x+2)+x2(x+2)-x(x+2)+(x+2)

=(x+2)(x4-x3+x2-x+1)

31 tháng 8 2018

4x(x+y)(x+y+z)(x+z)+y2z2=4(x2+xy+xz)(x2+xy+xz+yz)+y2z2=4(x2+xy+xz)2+4yz(x2+xy+xz)+y2z2=(2(x2+xy+xz)+yz)2=(2x2+2xy+2xz+yz)

17 tháng 11 2021

Đặt \(x^2+x+1=t\)

\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12=t\left(t+1\right)-12=t^2+t-12=\left(t^2+t+\dfrac{1}{4}\right)-\dfrac{49}{4}=\left(t+\dfrac{1}{2}\right)^2-\left(\dfrac{7}{2}\right)^2=\left(t+\dfrac{1}{2}-\dfrac{7}{2}\right)\left(t+\dfrac{1}{2}+\dfrac{7}{2}\right)=\left(t-3\right)\left(t+4\right)=\left(x^2+x-2\right)\left(x^2+x+5\right)\)

17 tháng 11 2021

\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

\(\left(x^2+x+1\right)\left[\left(x^2+x+1\right)+1\right]-12\)

\(\left(x^2+x+1\right)^2\left(x^2+x+1\right)-12\)

\(\left(x^2+x+1\right)\left(x^2+x+1\right)-3\left(x^2+x+1\right)+4\left(x^2+x+1\right)-4.3\)

\(\left(x^2+x+1\right)\left(x^2+x-2\right)+4\left(x^2+x-2\right)\)

\(\left(x^2+x+5\right)\left(x^2+x-2\right)\)