Cho B= x6 - 20x5 - 20x4- 20x3-20x2-20x+3
Tính B khi x= 21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: 20=21-1=x-1
B=x6-20x5-20x4-20x3-20x2-20x+3
= x6-(x-1)x5-(x-1)x4-(x-1)x3-(x-1)x2-(x-1)x+3
=x6-x6+x5-x5+x4-x4+x3-x3+x2-x2+x+3
=x+3
=21+3
=24
20 x 2 + 20 x 3 + 20 x 4 +20
=40 + 60 + 80 + 20
=100+80+20
=180+20
=200
a) 20x4+20x3+20x3
= 20 x ( 4+3 + 3)
= 20 x10
= 200
b) (6x9-54)x(25 +26+27+.........41+42)
= 0 x (25 +26+27+.........41+42)
= 0
20x4+20x3+20x3
= 20 x ( 4+3 + 3)
= 20 x10
= 200
b) (6x9-54)x(25 +26+27+.........41+42)
= 0 x (25 +26+27+.........41+42)
= 0
\(A=1+3+3^2+...+\)\(3^{20}\)
=> \(3A=3+3^2+3^3+...+3^{21}\)
=>\(3A-A=\left(3+3^2+3^3+...+3^{21}\right)-\)\(\left(1+3+3^2+...+3^{20}\right)\)
=>\(A=\frac{3^{21}-1}{2}\)
=> \(B-A=\frac{3^{21}}{3}-\frac{3^{21}-1}{2}=\frac{2.3^{20}-3^{21}+1}{2}\)\(=\frac{1-3^{20}}{2}\)
Ta có \(x=21\Rightarrow x-1=20\)
biểu thức B có dạng :
\(B=x^6-\left(x-1\right)x^5-\left(x-1\right)x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x+3\)
\(=x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+3=x+3\)
Vậy \(B=21+3=24\)
\(B=x^6-20x^5-20x^4-20x^3-2x^2-20x+3\)
\(B=x^6-21x^5+x^5-21x^4+x^4-21x^3+x^3-21x^2+19x^2-20x+3\)
\(B=x^5\left(x-21\right)+x^4\left(x-21\right)+x^3\left(x-21\right)+x^2\left(x-21\right)+19x^2-20x+3\)
Do \(x=21\) nên \(\left(x-21\right)\left(x^5+x^4+x^3+x^2\right)=0\)
=> \(B=19.21^2-20.21+3=7962\)
VẬY \(B=7962\)
x=21
=>x-1=20
B=x^6-x^5(x-1)-x^4(x-1)-...-x(x-1)+3
=x^6-x^6+x^5-x^5+x^5-...-x^2+x+3
=x+3
=21+3=24